Veri Madenciliği ve Turizmde Veri Madenciliği Çalışmaları (Data Mining and Data Mining Studies in Tourism)
DOI:
https://doi.org/10.21325/jotags.2021.789Keywords:
Information and communication technologies, Big data, Data mining, Artificial intelligence, Machine learningAbstract
With the power of the internet, digital technology is increasingly changing the perception of data creation, storage, and analysis. A large volume of data is generated at an incredible speed and variety in several different media, and at the same speed, technological solutions are created that enable data storage and advanced analysis techniques. The concept of data mining, which emerge due to the advancement of information and communication technologies and its development in the tourism field is examined. Thus, data mining and other related concepts are explained, and studies conducted using data mining techniques between 1999 and 2020 examined. Accordingly, while solutions were proposed for various tourism dynamics, including tourism marketing, demanding or image management in data mining studies, it was concluded that they were not at a high extent and that the progress of the conceptualization in the field remained insufficient. This research, therefore, is one of the leading studies that attempt to meet the needs in terms of drawing a general framework about the concept of data mining and including the current developments in tourism literature.
References
Acumen. (2020). Deep learning market global industry analysis, market size, opportunities and forecast, 2019 - 2026. Acumen Research and Consulting. Erişim Adresi: https://www.acumenresearchandconsulting.com/deep-learning-market. Erişim Tarihi: 05.01.2021.
Akıncı, A. N. (2019). Büyük veri uygulamalarında kișisel veri mahremiyeti (Uzmanlık Tezi). TC Cumhurbaşkanlığı Strateji ve Bütçe Başkanlığı.
Alaei, A. R., Becken, S., & Stantic, B. (2019). Sentiment analysis in tourism: Capitalizing on big data. Journal of Travel Research, 58(2), 175-191.
Altunkaynak, B. (2019). Veri madenciliği yöntemleri ve r uygulamaları kavramlar – modeller–algoritmalar (İkinci Baskı ed.). Ankara: Seçkin Yayınevi.
Bach, M. P., Schatten, M., & Marušić, Z. (2013). Data mining applications in tourism: A keyword analysis. Paper presented at the Central European Conference on Information and Intelligent Systems. 24, 2013.
Bengio, Y., Goodfellow, I., & Courville, A. (2017). Deep learning. (1), USA: MIT press Massachusetts.
Blossom, H. D., & Alex, N. (2018). Ehealth. In A. E. Grant & J. H. Meadows (Eds.), Communication technology update and fundamentals (16 ed.). New York: Routledge.
Bose, I. (2009). Data mining in tourism. In Encyclopedia of information science and technology, second edition (pp. 936-940), IGI Global.
Bramer, M. (2007). Principles of data mining. (180),Springer.
Buhalis, D. (1998). Strategic use of information technologies in the tourism industry. Tourism management, 19(5), 409-421. doi:Doi 10.1016/S0261-5177(98)00038-7
Buhalis, D. (2019). Technology in tourism-from information communication technologies to etourism and smart tourism towards ambient intelligence tourism: A perspective article. Tourism Review.
Buhalis, D., & O'Connor, P. (2005). Information communication technology revolutionizing tourism. Tourism recreation research, 30(3), 7-16.
Carrasco, R. A., Araque, F., Salguero, A., & Vila, M. A. (2008). Applying fuzzy data mining to tourism area. In Handbook of research on fuzzy information processing in databases (pp. 563-584): IGI Global.
Cavanillas, J. M., Curry, E., & Wahlster, W. (2016). The big data value opportunity. In J. M. Cavanillas, E. Curry, & W. Wahlster (Eds.), New horizons for a data-driven economy (pp. 3-11): Springer, Cham.
Dolgun, M. Ö., Özdemir, T. G., & Oğuz, D. (2009). Veri madenciliğinde yapısal olmayan verinin analizi: Metin ve web madenciliği. İstatistikçiler Dergisi: İstatistik ve Aktüerya, 2(2), 48-58.
Emel, G. G., & Taşkın, Ç. (2006). Identifying segments of a domestic tourism market by means of data mining. In H.-D. Haasis, H. Kopfer, & J. Schönberger (Eds.), Operations research proceedings 2005 (pp. 653-658), Springer.
Ersöz, F. (2019). Veri madenciliği teknikleri ve uygulamaları (3. Baskı ed.). Ankara: Seçkin Yayınevi.
Firican, G. (2017). The 10 vs of big data. Erişim Adresi: https://tdwi.org/articles/2017/02/08/10-vs-of-big-data.aspx. Erişim Tarihi: 27.12.2020.
Gandomi, A., & Haider, M. (2015). Beyond the hype: Big data concepts, methods, and analytics. International journal of information management, 35(2), 137-144. doi:10.1016/j.ijinfomgt.2014.10.007
GartnerITGlossary (2020). Big data. Erişim Adresi: http://www.gartner.com/it-glossary/big-data/. Erişim Tarihi: 27.12.2020.
Ghasemaghaei, M., & Calic, G. (2020). Assessing the impact of big data on firm innovation performance: Big data is not always better data. Journal of business research, 108, 147-162. doi:10.1016/j.jbusres.2019.09.062
Ghasemaghaei, M., Ebrahimi, S., & Hassanein, K. (2018). Data analytics competency for improving firm decision making performance. Journal of Strategic Information Systems, 27(1), 101-113. doi:10.1016/j.jsis.2017.10.001
Goodfellow, I., Bengio, Y., Courville, A., & Bengio, Y. (2016). Deep learning, (1), MIT press Cambridge.
Google Akademik (2020). Allintitle: Tourism "data mining". Erişim Adresi: https://scholar.google.com.tr/scholar?q=allintitle:+tourism+%22data+mining%22&hl=tr&as_sdt=0,5. Erişim Tarihi: 06.01.2021
GoogleCloud (2020). Büyük veri nedir. Erişim Adresi: https://cloud.google.com/what-is-big-data?hl=tr. Erişim Tarihi: 14.12.2020.
Grant, A. E., & Meadows, J. H. (2018). Communication technology update and fundamentals (16 ed.). New York: Routledge.
Gu, Z., Zhang, Y., Chen, Y., & Chang, X. (2016). Analysis of attraction features of tourism destinations in a mega-city based on check-in data mining—a case study of shenzhen, china. ISPRS International Journal of Geo-Information, 5(11), 210.
Guoxia, Z., & Jianqing, T. (2009). The application of data mining in tourism information. Paper presented at the 2009 International Conference on Environmental Science and Information Application Technology.
Ha, S. H., & Park, S. C. (1998). Application of data mining tools to hotel data mart on the intranet for database marketing. Expert Systems with Applications, 15(1), 1-31. doi:Doi 10.1016/S0957-4174(98)00008-6
Halkiopoulos, C., & Koumparelis, A. (2020). Historical advertisements of hotels, tour agencies and involved services of tourism industry in greece: A data mining analysis via image processing. In V. Katsoni & T. Spyriadis (Eds.), Cultural and tourism innovation in the digital era (pp. 209-218): Springer.
Han, J., Pei, J., & Kamber, M. (2011). Data mining: Concepts and techniques: Elsevier.
Hand, D. J., Mannila, H., & Smyth, P. (2001). Principles of data mining (adaptive computation and machine learning), MIT Press.
Holst, A. (2020). Amount of information globally 2010-2024. Statista. Erişim Adresi: https://www.statista.com/statistics/871513/worldwide-data-created/#:~:text=The%20total%20amount%20of%20data,ever%2Dgrowing%20global%20data%20sphere. Erişim Tarihi: 27.12.2020.
IBM. (2020). What is big data analytics? IBM. Erişim Adresi: https://www.ibm.com/analytics/hadoop/big-data-analytics?mhsrc=ibmsearch_a&mhq=Zettabyte. Erişim Tarihi: 27.12.2020.
Jeffcock, P. (2018). What's the difference between ai, machine learning, and deep learning? Erişim Adresi: https://blogs.oracle.com/bigdata/difference-ai-machine-learningdeeplearning#:~:text=Machine%20learning%20is%20a%20subset,to%20solve%20more%20complex%20problems. Erişim Tarihi: 13.01.2021.
Kavlakoğlu, E. (2020). Ai vs. Machine learning vs. Deep learning vs. Neural networks: What’s the difference? Erişim Adresi: https://www.ibm.com/cloud/blog/ai-vs-machine-learning-vs-deep-learning-vs-neural-networks. Erişim Tarihi: 27.05.2020.
Koh, H. C., & Gan, L. L. (2009). A data mining analysis of healthcare tourism in singapore. Advances on Information Processing and Management, 26.
Law, R. (1998). Hospitality data mining myths. Hospitality Review, 16(1), 7.
Law, R., Buhalis, D., & Cobanoglu, C. (2014). Progress on information and communication technologies in hospitality and tourism. International Journal of Contemporary Hospitality Management, 26(5), 727-750. doi:10.1108/Ijchm-08-2013-0367
Law, R., Li, G., Fong, D. K. C., & Han, X. (2019). Tourism demand forecasting: A deep learning approach. Annals of tourism research, 75, 410-423. doi:10.1016/j.annals.2019.01.014
Law, R., Mok, H., & Goh, C. (2007). Data mining in tourism demand analysis: A retrospective analysis. Paper presented at the International Conference on Advanced Data Mining and Applications.
LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444. doi:10.1038/nature14539
Li, Q., Li, S., Zhang, S., Hu, J., & Hu, J. (2019). A review of text corpus-based tourism big data mining. Applied Sciences, 9(16), 3300. doi:ARTN 330010.3390/app9163300
Liu, S. (2020). Artificial intelligence (ai) worldwide - statistics & facts. Erişim Adresi: https://www.statista.com/topics/3104/artificial-intelligence-ai-worldwide/. Erişim Tarihi: 27.12.2020.
Mariani, M. (2019). Big data and analytics in tourism and hospitality: A perspective article. Tourism Review, 75(1), 299-303.
Martín, C. A., Torres, J. M., Aguilar, R. M., & Diaz, S. (2018). Using deep learning to predict sentiments: Case study in tourism. Complexity, 2018, 1-9.
Mayer-Schönberger, V., & Cukier, K. (2013). Big data, a revaluation that will transform how we live, work, and think (B. Erol, Trans.), Houghton Mifflin Harcourt Publishing Company.
Mazumdar, S., Seybold, D., Kritikos, K., & Verginadis, Y. (2019). A survey on data storage and placement methodologies for cloud-big data ecosystem. Journal of Big Data, 6(1), 15. doi:ARTN 1510.1186/s40537-019-0178-3
Mirela, D., Tiberiu, S., & Adina, B. (2009). Toward a distributed data mining system for tourism industry. Annals of Faculty of Economics, 4(1), 922-926.
Mistilis, N., & Dwyer, L. (2000). Information technology and service standards in mice tourism. Paper presented at the Journal of Convention & Exhibition Management.
Mitchell, T. M. (1999). Machine learning and data mining. Communications of the ACM, 42(11), 30-36. doi:Doi 10.1145/319382.319388
Morgan, S. (2020). The 2020 data attack surface report arcserve. Erişim Adresi: https://1c7fab3im83f5gqiow2qqs2k-wpengine.netdna-ssl.com/wp-content/uploads/2020/12/ArcserveDataReport2020.pdf. Erişim Tarihi: 26.12.2020.
Okuhara, K., Yeh, K.-Y., Hsia, H.-C., & Ishii, H. (2008). Data mining of geographical accessibility for tourism in regional area. Paper presented at the 2008 Eighth International Conference on Intelligent Systems Design and Applications.
Olmeda, I., & Sheldon, P. J. (2002). Data mining techniques and applications for tourism internet marketing. Journal of Travel & Tourism Marketing, 11(2-3), 1-20.
Oracle. (2018). Make ai collaboration your next b2b marketing move. Erişim Adresi: https://blogs.oracle.com/cx/make-your-next-b2b-marketing-move-ai-collaboration. Erişim Tarihi: 12.01.2021.
Oracle. (2020). What is big data? Big data defined. Erişim Adresi: https://www.oracle.com/big-data/what-is-big-data.html. Erişim Tarihi: 03.01.2020.
Park, S., Xu, Y., Jiang, L., Chen, Z., & Huang, S. (2020). Spatial structures of tourism destinations: A trajectory data mining approach leveraging mobile big data. Annals of Tourism Research, 84, 102973. doi:ARTN 10297310.1016/j.annals.2020.102973
Pertheban, S., Narayana Samy, G., & Shanmugam, B. (2020). A systematic literature review: Information accuracy practices in tourism. Journal of Quality Assurance in Hospitality & Tourism, 21(1), 1-30. doi:10.1080/1528008x.2018.1563016
Phillips-Wren, G. (2012). Ai tools in decision making support systems: A review. International Journal on Artificial Intelligence Tools, 21(02), 1240005. doi:Artn 124000510.1142/S0218213012400052
Press, G. (2020). 6 predictions about data in 2020 and the coming decade. Forbes. Retrieved from https://www.forbes.com/sites/gilpress/2020/01/06/6-predictions-about-data-in-2020-and-the-coming-decade/?sh=5d7138624fc3
Reinsel, D., Gantz, J., & Rydning, J. (2018). The digitization of the world: From edge to core. International Data Corporation. Retrieved from: https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf. Erişim Tarihi: 21.12.2020.
Salguero, A., Araque, F., Carrasco, R., De Campos, A., & Martínez, L. (2007). Using fuzzy data mining for finding preferences in adventure tourism. Eurofuse Workshop. Erişim Adresi: https://www.researchgate.net/profile/Luis_Martinez19/publication/241881953_Using_Fuzzy_Data_Mining_for_finding_preferences_in_adventure_tourism/links/582446ef08aeb45b58899315/Using-Fuzzy-Data-Mining-for-finding-preferences-in-adventure-tourism.pdf. Erişim Tarihi: 16.01.2021.
SAS. (2020). Data mining what it is & why it matters. Erişim Adresi: https://www.sas.com/tr_tr/insights/analytics/data-mining.html#dmusers. Erişim Tarihi: 15.02.2021.
SEAGATE. (2020). Rethink data: Put more of your business data to work from edge to cloud. Erişim Adresi: https://www.seagate.com/files/www-content/our-story/rethink-data/files/Rethink_Data_Report_2020.pdf. Erişim Tarihi: 26.12.2020.
Shapoval, V., Wang, M. C., Hara, T., & Shioya, H. (2018). Data mining in tourism data analysis: Inbound visitors to japan. Journal of Travel Research, 57(3), 310-323. doi:10.1177/0047287517696960
Sheng, F., Zhang, Y., Shi, C., Qiu, M., & Yao, S. (2020). Xi’an tourism destination image analysis via deep learning. Journal of Ambient Intelligence and Humanized Computing, 1-10. doi:10.1007/s12652-020-02344-w
Siddiqa, A., Karim, A., & Gani, A. (2017). Big data storage technologies: A survey. Frontiers of Information Technology & Electronic Engineering, 18(8), 1040-1070. doi:10.1631/Fitee.1500441
Strohbach, M., Daubert, J., Ravkin, H., & Lischka, M. (2016). Big data storage. In J. M. Cavanillas, E. Curry, & W. Wahlster (Eds.), New horizons for a data-driven economy (pp. 119-141): Springer, Cham.
Tichter, G., Grossmann, W., & Werthner, H. (1999). Using data mining in analysing local tourism patterns. In Information and communication technologies in tourism 1999 (pp. 1-10): Springer.
Varian, H. R. (2014). Big data: New tricks for econometrics. Journal of Economic Perspectives, 28(2), 3-28. doi:10.1257/jep.28.2.3
Wilkinson, J. S. (2018). Internet of things (iot). In A. E. Grant & J. H. Meadows (Eds.), Communication technology update and fundamentals (16 ed., pp. 159-168). New York: Routledge.
Wolfewicz, A. (2020). Deep learning vs. Machine learning – what’s the difference? Erişim Adresi: https://www.levity.ai/blog/difference-machine-learning-deep-learning. Erişim Tarihi: 01.14.2021.
Woodie, A. (2020a). Data boom gets even bigger, thanks to covid-19. Erişim Adresi: https://www.datanami.com/2020/05/07/the-big-cloud-data-boom-gets-even-bigger-thanks-to-covid-19/. Erişim Tarihi: 29.12.2020.
Woodie, A. (2020b). Storage in the exabyte era. Erişim Adresi: https://www.datanami.com/2020/02/19/storage-in-the-exabyte-era/. Erişim Tarihi: 29.12.2020.
Wu, J., Wang, J., Nicholas, S., Maitland, E., & Fan, Q. (2020). Application of big data technology for covid-19 prevention and control in china: Lessons and recommendations. Journal of Medical Internet Research, 22(10), e21980. doi:10.2196/21980
Xu, J. (2014). Managing digital enterprise: Ten essential topics, Springer.
Yan, Y., Chen, J., & Wang, Z. (2020). Mining public sentiments and perspectives from geotagged social media data for appraising the post-earthquake recovery of tourism destinations. Applied Geography, 123, 102306. doi:ARTN 10230610.1016/j.apgeog.2020.102306
Zhang, J., & Dong, L. (2021). Image monitoring and management of hot tourism destination based on data mining technology in big data environment. Microprocessors and Microsystems, 80, 103515.
Zheng, Z., Zhu, J., & Lyu, M. R. (2013). Service-generated big data and big data-as-a-service: An overview. Paper presented at the 2013 IEEE international congress on Big Data.
Zhu, Y. (2018). A history of communication technology. In A. E. Grant & J. H. Meadows (Eds.), Communication technology update and fundamentals (16 ed., pp. 9-21). New York: Routledge.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Journal of Tourism & Gastronomy Studies
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.