Gastroarkeoloji: Arkeolojik Gıda Kalıntılarından Antik DNA’nın Geri Kazanımı (Gastroarchaeology: Recovery of Ancient DNA From Archaeological Food Residues)


  • İlkay YILMAZ



Ancient DNA, Archeology, Wheat, Olive, Grape, Legumes, Genetics


Ancient DNA (aDNA) is DNA obtained from the remains of living things that lived in the past. Genetic approaches to studies in the field of archeology and the development of new generation sequencing technologies have made it possible to have detailed information on remains such as wheat grains and olive kernels, legume seeds, grape kernels obtained from excavations. Today, continuously developed DNA sequence information increases the reliability of the results of archaeological remains by eliminating the technical limitations of classical methodologies. After molecular biology, now molecular archeology studies DNA in ancient plants, animals and humans to address questions of history as well as biology. Biological materials obtained as a result of studies in archaeological areas are important in terms of determining the lifestyle of the period, determining the genetic subspecies of some plants and animals and determining their changes. It can even provide information about extinct beings. However, it is necessary to be as careful as possible when collecting samples from ancient excavation sites. Theories about the past will continue to be reshaped as food remains at archaeological sites are recovered and DNA sequencing techniques improve. The aim of this article, to exemine the recovery of aDNA and the studies on the subject and the effects of these studies on gastroarchaeology. For this purpose, a literature review was conducted.



Anikster, Y. (1988). The biological structure of native populations of wild emmer wheat (triticum turgidum var. dicoccoides) in Israel. Final Report 1984-1987. Part 1-2., USDA, ARS, Oregon State Univ., Corvallis, USA and The Nat. Cons. for Res. Develop. Ministr. Sci. Develop. Israel.

Allaby, R.G., and Jones, M.K., & Brown, T.A., (1994). DNA in charred wheat grains from the ıron age Hillfort at Danebury, England. Antiquity, 68, 126-132.

Allaby, R. G., Banerjee, M. and Brown, T. A. (1999). Evolution of the high molecular weight glutenin loci of the A, B, D and G genomes of wheat. Genome, 42: 296-307.

Allaby, R.G., O’Donoghue, K., Sallares, R., Jones, M.K., & Brown, T.A., (1997). Evidence for the survival of ancient DNA in charred wheat seeds from European archaeological sites. Ancient Biomol. 1, 119-129.

Austin, J.J. & Andrew, B.S. (1997). Palaeontology in a molecular world: the search for authentic ancient DNA. Tree, 12: 303–306.

Bassermann-Jordan F., (1975). Geschichte des Weinbaus, 3rd edn. Pfälzische Verlagsanstalt GmbH., Neustadt an der Weinstraße, reprint of the 2nd edn. Frankfurter Verlags-Anstalt A.G., Frankfurt am Main, 1923; vol II, 362–416.

Blatter, R., Jacomet, S., & Schlumbaum, A., (2002). Little evidence for the presence of single copy genes in charred archaeological wheat. Ancient Biomolecules, 4, 65-78.

Bomblies, K., Wang, R., Ambrose, B., Schmidt, R., Meeley, R., & Doebley, J. (2003). Duplicate FLORICAULA/LEAFY homologs ZFL1 and ZFL2 control ınflorescence architecture and flower patterning in Maize. Development, 130: 2385–2395.

Bilgiç, H. (2002). Genetic relationship of wild and primitive wheat species from turkey based on microsatellite markers and ancient DNA analysis. Ph. D. Thesis, Middle East Technical University, Ankara, Turkey. 6. Boardman, S. and Jones, G. 1990. Experiments on the Effects of Charring.

Bilgic, H., Hakki, E., Pandey, A., Khan, M., & Akkaya, M. (2016). Ancient DNA from 8400 year-old Çatalhöyük wheat: implications for the origin of neolithic agriculture. PloS one. 11. e0151974. 10.1371/journal.pone.0151974.

Bösl, E. (2017). Zur Wissenschaftsgeschichte der aDNA-Forschung [aDNA Research From a Historical Perspective]. NTM, 25(1), 99–142. []

Brown, T. (1999). How ancient DNA may help in understanding the origin and spread of agriculture. philosophical transactions of the royal society. Biological Sciences, 354: 89–98.

Bunning, S.L., Jones, G., & Brown, T.A., (2012). next generation sequencing of DNA in 3300-year-old charred cereal grains. J. Archaeol. Sci. 39, 2780-2784.

Cappellini, E., Gilbert, M.T., Geuna, F., Fiorentino, G., Hall, A., Thomas-Oates, J., Ashton, P.D., Ashford, D.A., Arthur, P., Campos, P.F., Kool, J., Willerslev, E., & Collins, M.J., (2010). A multidisciplinary study of archaeological grape seeds. Naturwissenschaften, 97, 205-217.

Castillo, C., Tanaka, K., Sato, Y., Ishikawa, R., Bellina, B., Higham, C., Chang, N., Mohanty, R., Kajale, M. & Fuller, D. (2015). Archaeogenetic study of prehistoric rice remains from Thailand and India: evidence of early Japonica in South and Southeast Asia. Archaeological and Anthropological Sciences. 8. 10.1007/s12520-015-0236-5.

Cavalieri, D.,McGovern, P. E., Hartl, D. L., Mortimer, R., & Polsinelli, M. (2003). Evidence for s. cerevisiae fermentation in ancient wine, J Molecular Evolution, 57, Supp. 1, 226–S232.

Deakin, W.J., Rowley-Conwy, P., &Shaw, C.H., (1998). Amplification and sequencing of DNA from preserved sorghum of up to 2800 years antiquity found at Qasr Ibrim. Ancient Biomolecules 2, 27-41.

Der Sarkissian, C., Allentoft, M. E., Ávila-Arcos, M. C., Barnett, R., Campos, P. F., Cappellini, E., Ermini, L., Fernández, R., da Fonseca, R., Ginolhac, A., Hansen, A. J., Jónsson, H., Korneliussen, T., Margaryan, A., Martin, M. D., Moreno-Mayar, J. V., Raghavan, M., Rasmussen, M., Velasco, M. S., Schroeder, H., & Orlando, L. (2015). ancient genomics. philosophical transactions of the royal society of London. Series B, Biological Sciences, 370(1660), 20130387.

Dhaliwal, H.S. (1977). Origin of triticum monococcum l. Wheat Inf. Serv. 44:14-17.

Harlan, J.R. (1981). The early history of wheat: earliest traces to the sack of Rome. Pp. 1-19 in Wheat Science Today and Tomorrow (L.T. Evans and W.J. Peacock, eds.). Cambridge Univ. Press, Cambridge.

Doebley, J., and Lukens, L. (1998). Transcriptional regulation and the evolution of plant form. Plant Cell 10: 1075-1082.

Doebley, J., Gaut, B., & Smith, B. (2006). The molecular genetics of crop domestication. Cell. 1309–1321.

Elbaum, R., Melamed-Bessudo, C., Boaretto, E., Galili, E., Lev-Yadun, S., Levy, A.A., & Weiner, S., (2006). Ancient olive DNA in pits: preservation, amplification and sequence analysis. J. Archaeol. Sci. 33, 77-88.

Evershed, R. P. (2008). Organic residue analysis in archaeology: the archaeological biomarker revolution, Archaeometry, 50, 895–924.

Fernández, E., Thaw S., Brown T. A., Arroyo-Pardo E., Buxó R., Serret M.D., et al. (2013). DNA Analysis in charred grains of naked wheat from several archaeological sites in Spain. Journal of Archaeological Science, 40: 659–670.

Freita, F.O., Bendel, G., Allaby, R.G., & Brown, T. A. (2003). DNA from primitive maize landraces and archaeological remains: ımplications for the domestication of maize and ıts expansion into South America. Journal of Archaeological Science, 30 :901–908.

Fuks, D., Bar-Oz, G., Tepper, Y., Erickson-Gini, T., Langgut, D., Weissbrod, L., & Weiss, E. (2020). The rise and fall of viticulture in the late antique negev highlands reconstructed from archaeobotanical and ceramic data. Proceedings of the National Academy of Sciences, 117(33), 19780-19791.

Fuller, D.Q., Willcox, G., & Allaby R. G. (2011). Cultivation and domestication had multiple origins: arguments against the core area hypothesis for the origins of agriculture in the Near East. World Archaeology, 43: 628–652.

Galili, E., Stanley, D.J., Sharvit, J., & Weinstein-Evron, M. (1997). Evidence for earliest olive-oil production in submerged settlements off the Carmel Coast, Israel, J. Archaeol. Sci. 24,1141-1150.

Gismondi, A., Rolfo, M. F., Leonardi, D., Rickards, O., & Canini, A. (2012). Identification of ancient Olea Europaea L. and Cornus mas L. seeds by DNA barcoding. Comptes Rendus Biologies, 335(7), 472–479.

Gugerli, F., Parducci, L., & Petit, R.J., (2005). Ancient plant DNA: review and prospects. New Phytol. 166, 409-418.

Gyulai, G., Humphreys, M., Lagler, R., Szabó, Z., Tóth, Z., Bittsánszky, A., Gyulai, F. & Heszky, L. (2006). Seed remains of common millet from the 4th (Mongolia) and 15th (Hungary) centuries: AFLP, SSR and mtDNA Sequence Recoveries. Seed Sci. Res., 16:179-191.

Hamilakis, Y. (1996). Wine, oil, and the dialectics of power in bronze age crete: a review of the evidence, Oxford Journal of Archaeology, 15, 1–32.

Heun M, Schäfer-Pregl R, Klawan D, Castagna R, Accerbi M, Borghi B, et al. (1997). Site of einkorn wheat domestication ıdentified by DNA fingerprinting. Science, 278: 1312–1314.

Helbaek., H. (1964). First impressions of the Çatal Hüyük plant husbandry. Anatolian Studies, 14: 121– 123

Margaritis, E., & Jones, M. (2006). Beyond cereals: crop processing and vitis vinifera l. ethnography, experiment and charred grape remains from Hellenistic Greece. JAS ,33, 784–805.

Lindahl, T. (1993). Instability and decay of the primary structure of DNA, Nature, 362.709-715.

Mahmoudi Nasab, H., Mardi, M., Talaee, H., Fazeli Nashli, H., Pirseyedi, S. M., Hejabri Nobari, A., & mowla, s. j. (2010). molecular analysis of ancient dna extracted from 3250-3450 Year-old Plant Seeds Excavated from Tepe Sagz Abad in Iran, J. Agr. Sci. Tech. Vol. 12: 459-470.

Marcussen, T., Sandve, S. R., Heier, L., Spannagl, M, Pfeifer M., Jakobsen, K. S., et al. (2014) Ancient hybridizations among the ancestral genomes of bread wheat. Science, 345: 6194.

Manen, J.-F., Bouby, L., Dalkoni, O., Marinval, P., Turgay, M., & Schlumbaum, A. (2003). Microsatellites from archaeological vitis vinifera seeds allow a tentative assignment of the geographical origin of ancient cultivars. Journal of Archaeological Science, 30: 721– 729.

Mangafa M., & Kotsakis K. (1996). A new method for the identification of wild and cultivated charred grape seeds. J Archaeol Sci ,23:409–418.

Mellaart, J. (1967) Çatal Hüyük: a neolithic town in Anatolia. McGraw-Hill.

McGovern, P. E., Mirzoian, A., & Hall, G. R. (2009). Ancient Egyptian Herbal Wines, PNAS, 106 (18), 7361–7366.

McGovern, P., Jalabadze, M., Batiuk, S., Callahan, M. P., Smith, K. E., Hall, G., Kvavadze, E., Maghradze, D., Rusishvili, N., Bouby, L., Failla, O., Cola, G., Mariani, L., Boaretto, E., Bacilieri, R., This, P., Wales, N., & Lordkipanidze, D. (2017). Early neolithic wine of Georgia in the South Caucasus. PNAS

Miller, N. F. (2011). Ancient agricultural landscape at Godin, in: H. Gopnik, M. S. Rothman (eds.), On the High Road, The History of Godin Tepe, Iran, Royal Ontario Museum Press, Ontario, 59.

Miller, N. F. (2008). Sweeter than wine? the use of grape in early Western Asia, Antiquity, 82, 937–946.

McGovern, P. E., Mirzoian, A., and Hall, G. R. (2009). Ancient Egyptian herbal wines, PNAS, 106 (18), 7361–7366.

Mikić A. M. (2015). The first attested extraction of ancient DNA in legumes (fabaceae). Frontiers in Plant Science, 6, 1006.

Mulligan C. J. (2005). Isolation and analysis of DNA from archaeological, clinical, and natural history specimens. Methods in Enzymology, 395, 87–103.

Nesbitt, M., & Samuel, D. (1998) Wheat domestication: archaeobotanical evidence. Science, 279: 1431– 1431.

Nevo, E., Beiles, A., & Krugman, T. (1988). Natural selection of allozyme polymorphisms: a microgeographical differentiation by edaphic, topographical, and temporal factors in wild emmer wheat (triticum dicoccoides). Theoretical and Applied Genetics, 76: 737–752. doi: 10.1007/BF00303521 PMID: 2423.

Oliveira, H., Civáň, P., Morales, J., Rodríguez, A., & Lister, D. (2012). Ancient DNA in archaeological wheat grains: preservation conditions and the study of pre-hispanic agriculture on the island of Gran Canaria (Spain). Journal of Archaeological Science - J ARCHAEOL SCI. 39. 10.1016/j.jas.2011.10.008.

Ozkan, H., Willcox, G., Graner A, Salamini, F., & Kilian, B. (2011) Geographic distribution and domestication of wild emmer wheat (triticum dicoccoides). Genetic Resources and Crop Evolution, 58: 11–53.

O’Donoghue, K., Clapham, A., Evershed, R.P., & Brown, T.A., (1996). Remarkable preservation of biomolecules in ancient Radish seeds. Proceedings of the Royal Society London Series B, Biological Sciences, 263, 541e547.

Janus, A. (2014). The use of ancient DNA to track the development and distribution of domesticated crops, (Yayınlanmış Yüksek Lisans Tezi), University of Pretoria, South Africa.

Jones, M., & Brown, T. (2000). Agricultural origins: the evidence of modern and ancient DNA. The Holocene, 10: 769–776.

Jaenicke-Despres, V., Buckler, E. S., Smith, B. D., Gilbert, M. T. P., Cooper, A., & Doebley, J. (2003). Early allelic selection in maize as revealed by ancient DNA, Science, 302 1206- 1208.

Palmer, S.A., Smith, O., & Allaby, R.G., (2012). The blossoming of plant archaeogenetics. Ann. Anat. 194, 146-156.

Palmer, S. A., Moore, J. D., Clapham, A. J., Rose, P., & Allaby, R. G. (2009). Archaeogenetic evidence of Ancient Nubian Barley evolution from six to two-row ındicates local adaptation. PLoS One 4 (7)e6301.

Pollmann, B., Jacomet, S., & Schlumbaum, A., (2005). Morphological and genetic studies of waterlogged prunus species from the Roman vicus tasgetium, Switzerland. Journal Archaeological Science, 32, 1471-1480.

Tanno, K-i, & Willcox, G. (2006). How fast was wild wheat domesticated? Science, 311: 1886–1886. PMID: 16574859.

Salamini, F., Özkan, H., Brandolini, A., Schafer-Pregl, R., & Martin, W. (2002). Genetics and feography of wild cereal domestication in the Near East. Nature reviews. Genetics, 3: 429–41.

Suh, H.S., Cho, J. H., Lee, Y. J. & Heu, M. H. (2000). RAPD variation of 13,010 and 17,310 year-old carbonized rice. 4 th International Rice Genetics Symposium, October, 22-27 2000, Manilla, Philipines.

Schlumbaum, A., Neuhaus, J. M., & Jacomet, S. (1998). Coexistence of tetraploid and hexaploid naked wheats in a neolithic lake dwelling of Central Europe. evidence from morphology and ancient DNA. J. Archaeol. Sci., 25: 1111-1118.

Schiffer, M. (1987). Formation processes of the archaeological record, University of Utah Press, Albuquerque.

Sallon, S., Solowey, E., Cohen, Y., Korchinsky, R., Egli, M., Woodhatch, I., Simchoni, O., & Kislev, M. (2008). Germination, genetics, and growth of an ancient date seed. Science, 320:1464.

Valamoti, S. M., Mangafa, M., Koukouli-Chrysanthaki, Ch., & Malamidou, D. (2007). Grape-pressings from Northern Greece: The earliest wine in the Aegean?, Antiquity, 81, 54–61.

Vaughan, D. A., Balazs, E., & Heslop-Harrison, J. S. (2007). From crop domestication to super-domestication. Annals of Botany. 893–901.

Vouillamoz, J. F., & Grando, M. S. (2006). Genealogy of wine grape cultivars: ‘pinot’ is related to ‘syrah’. Heredity, 97:102–110.

White, C., & Miller, N. (2018). The archaeobotany of grape and wine in Hittite Anatolia. Die Welt des Orients. 48. 209-224. 10.13109/wdor.2018.48.2.209.

Willerslev, E., & Cooper, A. (2005). Ancient DNA. Proceedings. Biological sciences / The Royal Society, 272: 3–16.

Wright, P. (2003). Preservation of destruction of plant remains by carbonization, Journal of Archaeological Science, 30, 577–583.

Zencirci, N., Ulukan, H., Nesbit, M., & Qualset, C. (2020). Hulled Wheat.Amazon Pub.

Zohary, D., Hopf, M., & Weiss, E. (2014). Domestication of plants in the Old World, 4th ed., Oxford.

Zohary, D., & Spiegel-Roy, P. (1975). Beginnings of fruit growing in The Old World, Science, 187 319-327.

[] (Erişim Tarihi 14 Haziran 2021)

[] (Erişim Tarihi 12 Haziran 2021)

[] (Erişim tarihi 24 Haziran2021)



How to Cite

ALBUSTANLIOĞLU, T., & YILMAZ, İlkay. (2023). Gastroarkeoloji: Arkeolojik Gıda Kalıntılarından Antik DNA’nın Geri Kazanımı (Gastroarchaeology: Recovery of Ancient DNA From Archaeological Food Residues). Journal of Tourism & Gastronomy Studies, 9(Special Issue 5), 42–60.

Most read articles by the same author(s)