Yerel Restoranların Değerlendirilmesinde Fikir Madenciliği: Gaziantep Örneği (Opinion Mining in the Evaluation of Local Restaurants: The Case of Gaziantep)

Authors

  • İbrahim Akın ÖZEN

DOI:

https://doi.org/10.21325/jotags.2021.794

Keywords:

Gaziantep restaurants, Text mining, Opinion mining, Aspect based sentiment analysis, Local restaurant

Abstract

In the tourism industry, the analysis of online tourist comments is seen as one of the methods to evaluate the products and services offered by businesses and to understand the needs of tourists. Evaluation of textual contents in tourist comments can be done by opinion mining, one of the text mining methods. Purpose of the study; It is the evaluation of foreign tourists' comments about restaurants that serve Gaziantep region-specific dishes on the TripAdvisor site, using the aspect-based sentiment analysis technique. During the data collection phase, restaurants operating in Gaziantep and ranked in the top eight on the TripAdvisor site were selected. Within the scope of the research, 358 comments created by foreign tourists in 2019-2020 about eight restaurants were collected by the researcher using the web scraping technique between 05.01.2021-09.01.2021. According to the research findings; Foreign tourists found the food served in Gaziantep restaurants delicious and positively evaluated their freshness and spicy taste. They also expressed their satisfaction with the atmosphere of the restaurants and the friendly approach of the staff. Tourists evaluated the restaurants as clean and stated that they could recommend it to others. On the other hand, tourists negatively rated restaurants as being expensive and busy.

References

Afzaal, M., & Usman, M. (2016). A novel framework for aspect-based opinion classification for tourist places. The 10th International Conference on Digital Information Management, ICDIM 2015, Icdim, 1–9. https://doi.org/10.1109/ICDIM.2015.7381850

Afzaal, M., Usman, M., & Fong, A. (2019). Predictive aspect-based sentiment classification of online tourist reviews. Journal of Information Science, 45(3), 341–363. https://doi.org/10.1177/0165551518789872

Agarwal, B., & Mittal, N. (2016). Prominent feature extraction for sentiment analysis (N. Mittal (ed.)). Springer International Publishing. https://doi.org/10.1007/978-3-319-25343-5

Alkalbani, A. M., Gadhvi, L., Patel, B., Hussain, F. K., Ghamry, A. M., & Hussain, O. K. (2017). Analysing cloud services reviews using opining mining. Proceedings - International Conference on Advanced Information Networking and Applications, AINA, 1124–1129. https://doi.org/10.1109/AINA.2017.173

Amalia, N., Putri, S., & Alamsyah, A. (2017). Opinion Mining of Tripadvisor Review Towards Five-Star Hotels in Bandung City. 4(1), 4.

Blair-Goldensohn, S., Neylon, T., Hannan, K., Reis, G. A., McDonald, R., & Reynar, J. (2008). Building a sentiment summarizer for local service reviews. Workshop on NLP in the Information Explosion Era.

Brody, S., & Elhadad, N. (2010). An Unsupervised Aspect-Sentiment Model for Online Reviews. HLT ’10 Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics.

Çekal, N., & Aktürk, H. (2019). Gaziantep mutfağına özgü çorbalara ilişkin müşteri değerlendirmelerinin incelenmesi. Journal of Tourism and Gastronomy Studies, 7(2), 1488–1498. https://doi.org/10.21325/jotags.2019.431

Dalgıç, A., Güler, O., & Birdir, K. (2016). Tripadvisor. com’da yer alan restoran şikâyetlerinin analizi: Mersin ve Hatay’da yöresel yiyecek sunan restoranlara yönelik bir araştırma. Journal of Tourism and Gastronomy Studies, 4(1), 153–173.

Erol, G., Örgün, E., & Keskin, E. (2019). Sosyal medyada restoran imajı: Kapadokya örneği. Journal of Tourism and Gastronomy Studies, 7(4), 3290–3302. https://doi.org/10.21325/jotags.2019.529

Giritlioğlu, İ., & Kahraman, M. (2017). Yerli turistlerin Gaziantep mutfağına bakış açılarının tespit edilmesine yönelik bir araştırma. Sosyal Bilimler Dergisi, 7(14), 387–412. https://doi.org/10.31834/kilissbd.347895

Gürbüz, S., & Şahin, F. (2014). Sosyal bilimlerde araştırma yöntemleri. Ankara: Seçkin Yayıncılık.

He, W., Zha, S., & Li, L. (2013). Social media competitive analysis and text mining: A case study in the pizza industry. International Journal of Information Management, 33(3), 464–472. https://doi.org/10.1016/J.IJINFOMGT.2013.01.001

Jo, Y., & Oh, A. H. (2011). Aspect and sentiment unification model for online review analysis. Proceedings of the Fourth ACM International Conference on Web Search and Data Mining - WSDM ’11, 815. https://doi.org/10.1145/1935826.1935932

Koçoğlu, C. M. (2019). Yerli turistlerin gastronomi turizmine yönelik tutumlarının demografik özellikler açısından incelenmesi: Gaziantep örneği. Gastroia: Journal of Gastronomy And Travel Research, 3(2), 366–380. https://doi.org/10.32958/gastoria.532807

Lei, S., & Law, R. (2015). Content analysis of TripAdvisor reviews on restaurants: A case study of Macau. Journal of Tourism, 16(1), 17–28. http://search.ebscohost.com/login.aspx?direct=true&db=hjh&AN=111435361&site=ehost-live

Li, Q., Li, S., Zhang, S., Hu, J., & Hu, J. (2019). A review of text corpus-based tourism big data mining. Applied Sciences (Switzerland), 9(16). https://doi.org/10.3390/app9163300

Meena, A., & Prabhakar, T. V. (2007). Sentence level sentiment analysis in the presence of conjuncts using linguistic analysis. In Advances in Information Retrieval (pp. 573–580). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-71496-5_53

Miner, G., Elder IV, J., Fast, A., Hill, T., Nisbet, R., & Delen, D. (2012). Practical text mining and statistical analysis for non-structured text data applications. Academic Press.

Misner, I., & Devine, V. (1999). The world’s best-known marketing secret: Building your business with word-of-mouth marketing. https://scholar.google.com.tr/scholar?hl=tr&as_sdt=0%2C5&q=The+world’s+best+known+marketing+secret%3A+Building+your+business+with+word-of-mouth+marketing.&btnG=

Mostafa, M. M. (2013). More than words: Social networks’ text mining for consumer brand sentiments. Expert Systems with Applications, 40(10), 4241–4251. https://doi.org/10.1016/j.eswa.2013.01.019

Namkung, Y., & Jang, S. C. (2007). Does food quality really matter in restaurants? Its impact on customer satisfaction and behavioral ıntentions. Journal of Hospitality and Tourism Research, 31(3), 387–409. https://doi.org/10.1177/1096348007299924

Nasim, Z., & Haider, S. (2017). ABSA toolkit: An open source tool for aspect based sentiment analysis. International Journal on Artificial Intelligence Tools, 26(06), 1750023. https://doi.org/10.1142/s0218213017500233

Nowacki, M. (2019). World Cities’ Image in TripAdvisor Users’ Reviews. E-Review of Tourism Research, 16(2–3). https://journals.tdl.org/ertr/index.php/ertr/article/view/327

Oğuz, B. (2009). Metin madenciliği teknikleri kullanılarak kulak burun boğaz hasta bilgi formlarının analizi (Yüksek Lisans Tezi). Akdeniz Üniversitesi, Sağlık Bilimleri Enstitüsü, Antalya.

Özen, İ. A., & İlhan, İ. (2020). Opinion mining in tourism: A Study on ”Cappadocia Home Cooking” Restaurant. In E. Çeltek (Ed.), Handbook of Research on Smart Technology Applications in the Tourism Industry (pp. 43–64). IGI Global.

Saeidi, M., Bouchard, G., Liakata, M., & Riedel, S. (2016). SentiHood: Targeted aspect based sentiment analysis dataset for urban neighbourhoods. 1546–1556. http://arxiv.org/abs/1610.03771

Seker, S. E. (2016). Duygu analizi ( Sentimental Analysis ). YBS Ansiklopedisi, 3(3), 21–36.

Uçuk, C., & Kayran, M. (2020). Gaziantep mutfağının tarihsel gelişimi: Milli mücadele döneminde Gaziantep’te yeme içme faaliyetleri. Safran Kültür ve Turizm Araştırmaları Dergisi, 3(2), 258–272. https://dergipark.org.tr/en/pub/saktad/issue/56662/723281

Weismayer, C., Pezenka, I., & Gan, C. H.-K. (2018). Aspect-Based sentiment detection: Comparing human versus automated classifications of tripadvisor reviews. In Information and Communication Technologies in Tourism 2018 (pp. 365–380). Springer International Publishing. https://doi.org/10.1007/978-3-319-72923-7_28

Wilson, T., Wiebe, J., & Hoffmann, P. (2005). Recognizing contextual polarity in phrase-level sentiment analysis. Proceedings of the Conference on Human Language Technology and Empirical Methods in Natural Language Processing - HLT ’05, 347–354. https://doi.org/10.3115/1220575.1220619

Xiang, Z., Schwartz, Z., Gerdes, J. H., & Uysal, M. (2015). What can big data and text analytics tell us about hotel guest experience and satisfaction? International Journal of Hospitality Management, 44, 120–130. https://doi.org/10.1016/j.ijhm.2014.10.013

Zagralı, E., & Akbaba, A. (2015). Turistlerin destinasyon seçiminde yöresel yemeklerin rolü: İzmir yarımadası’nı ziyaret eden turistlerin görüşleri üzerine bir araştırma. Journal of Yaşar University, 10(40), 6633. https://doi.org/10.19168/jyu.45921

Zhang, Z., Ye, Q., Zhang, Z., & Li, Y. (2011). Sentiment classification of internet restaurant reviews written in Cantonese. Expert Systems with Applications. https://doi.org/10.1016/j.eswa.2010.12.147

Published

21-02-2023

How to Cite

ÖZEN, İbrahim A. (2023). Yerel Restoranların Değerlendirilmesinde Fikir Madenciliği: Gaziantep Örneği (Opinion Mining in the Evaluation of Local Restaurants: The Case of Gaziantep). Journal of Tourism & Gastronomy Studies, 9(1), 377–391. https://doi.org/10.21325/jotags.2021.794