Destination Image Analysis with User-Generated Content: A Computer Vision and Machine Learning Approach

Authors

  • Kutan KORUYAN
  • Erdem AKTAŞ

DOI:

https://doi.org/10.21325/jotags.2022.1085

Keywords:

Destination image, Computer vision, Word embedding, k-means clusering, Instagram

Abstract

This study proposes an approach to identify the elements that shape the destination image in the minds of potential tourists who peruse social network posts, based on Instagram images of Foça, a touristic district of İzmir, Turkey, in summer 2019. The elements in shared images that contributed to the development of Foça’s destination image were identified with computer vision, while word embedding and machine learning were used for element categorization and clustering, respectively. The study demonstrates the proportion of the elements in the photographs shared by Instagram users in 27 categories and subsequently, without any human intervention, constructs a representation of the elements the destination image was most dependent upon. Categorization showed that the categories that were the most representative of the destination image of Foça were sea and landforms, celestial, arts, events, urban, boating and water sports and constructional, respectively. The majority of destination image research with social network data sets relies on observation, interpretation or survey results. These studies are time-consuming and labour-intensive due to the large size of social network data. However, in this study, social network data can be analysed faster and efficiently with artificial intelligence and machine learning compared to conventional methods. Furthermore, the innovative methodology developed in the study contributes to the current tourism literature by proposing a decision support system for making computer-assisted tourism marketing decisions.

References

Arthur, D. & Vassilvitskii, S. (2007), k-means++: The advantages of careful seeding, in Gabow, H. (Ed.), SODA '07: Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, Society for Industrial and Applied Mathematics, Philadelphia, USA, pp. 1027–1035.

Baloglu, S. & McCleary, K. W. (1999), “A model of destination image formation”, Annals of Tourism Research, 26(4), 868–897. doi: 10.1016/S0160-7383(99)00030-4.

Bayram, M. Keleş, Y. & Bayram, Ü. (2016), Çevrimiçi fotoğraflar üzerinden görsel destinasyon imajının incelenmesi: Erzincan doğa sporları örneği, in Güncü, A., Güneş, E., Alagöz, G., Fırat, M.Ç. Canbaba, İ.E. and Başar, B. (Ed.s), I. Ulusal Alternatif Turizm Kongresi bildiri kitabı, Erzincan Üniversitesi Turizm ve Otelcilik Meslek Yüksekokulu Yayınları, Erzincan, Turkey, pp. 101-110.

Beerli, A. & Martin, J.D. (2004), Factors influencing destination image, Annals of Tourism Research, 31(3), pp. 657-681. doi:10.1016/j.annals.2004.01.010.

Biçiçi, E. (2018), Ayna olarak Instagram, AJIT-e Online Academic Journal of Information Technology, (9)35, 81-97.

Binbaşıoğlu, H. (2017), Akdeniz’de yer alan ülkelerin ulusal turizm örgütlerinin Instagram adreslerinin incelenmesi. Yönetim, Ekonomi ve Pazarlama Araştırmaları Dergisi, 1(5), 13-25.

Chen, S. H. & Chen, Y. H. (2017), A content-based image retrieval method based on the Google Cloud Vision API and Wordnet, Nguyen, N. T., Tojo, S., Nguyen, L. M. and Trawiński, B. (Ed.s), Intelligent İnformation and Database Systems. ACIIDS 2017. Lecture Notes İn Computer Science, vol 10191, Springer, Cham, pp. 651-662. doi: 10.1007/978-3-319-54472-4_61.

Choi, T. Y. & Chu, R. (2001), Determinants of hotel guests’ satisfaction and repeat patronage in the Hong Kong hotel industry, International Journal of Hospitality Management, 20(3), 277-297.

Crompton, J. L. (1979), An assessment of the image of Mexico as a vacation destination and the influence of geographical location upon that image, Journal of Travel Research, 17(4), 18-23.

Demirkale, Ö. & Özarı, Ç. (2020), OECD ülkelerinin makroekonomik göstergelerine göre k-ortalamalar yöntemi ile analizi: Ekonomik özgürlük endeksi ile karşılaştırılması, Social Sciences Research Journal, 9(2) 49-58.

Deng, N. & Li, X. (Robert). (2018), Feeling a destination through the “right” photos: A machine learning model for DMOs’ photo selection, Tourism Management, (65), 267–278. doi: 10.1016/j.tourman.2017.09.010.

Deng, N., Liu, J., Dai, Y. & Li, H. (2019), Different cultures, different photos: A comparison of Shanghai’s pictorial destination image between East and West, Tourism Management Perspectives, (30), 182–192. doi: 10.1016/j.tmp.2019.02.016.

Dorsch, I. (2018), Content description on a mobile image sharing service: Hashtags on Instagram. Journal of Information Science Theory and Practice, 6(2), 46–61. doi: 10.1633/JISTAP.2018.6.2.4

Dwivedi, M. (2009), Online destination image of India: A consumer based perspective. International Journal of Contemporary Hospitality Management, 21(2), 226–232. doi: 10.1108/09596110910935714.

Echtner, C. M. & Ritchie, J. R. B. (2003), The meaning and measurement of destination image, Journal of Tourism Studies, 14(1), 37-48.

Eröz, S. S. & Doğdubay, M. (2012), Turistik ürün tercihinde sosyal medyanın rolü ve etik ilişkisi, Dokuz Eylül Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 27(1), 133-157.

Galí, N. & Donaire, J. A. (2015), Tourists taking photographs: The long tail in tourists’ perceived image of Barcelona, Current Issues in Tourism, 18(9),893–902. doi: 10.1080/13683500.2015.1037255

Gallarza, M.G., Saura, I.G. & Garcı́a, H.C. (2002), Destination image: Towards a conceptual framework, Annals of Tourism Research, 29(1), pp. 56-78.

Garay, L. (2019), #Visitspain. Breaking down affective and cognitive attributes in the social media construction of the tourist destination image, Tourism Management Perspectives, 32, 1-11, 100560. doi: 10.1016/j.tmp.2019.100560.

Gartner, W.C. (1993), Image formation process, Journal of Travel & Tourism Marketing, 2( 2-3), pp. 191-216.

Ghazali, R. M. & Cai, L. (2013), Social Media Sites in Destination İmage Formation, Munar, A. M., Gyimóthy, S. and Cai, L. (Ed.s), Tourism social media: Transformations in identity, community and culture (Tourism social science series, vol. 18), Emerald Group Publishing Limited, Bingley, pp. 73-86. doi: 10.1108/S1571-5043(2013)0000018007.

Goh, D. H. L., Ang, R. P., Chua A. Y. K. & Lee C. S. (2009), Why We Share: A Study of Motivations for Mobile Media Sharing, Liu, J., Wu, J., Yao, Y. and Nishida, T. (Ed.s), Active media technology. AMT 2009. Lecture notes in computer science, vol 5820, Springer, Berlin, pp. 195-206. doi: 10.1007/978-3-642-04875-3_23

Google (2021), Detect labels, available at: https://cloud.google.com/vision/docs/labels (accessed 10 December 2021).

Google (n.d.), Vision AI, available at: https://cloud.google.com/vision, (accessed 10 December 2021).

Govers, R., Go, F. M. & Kumar, K. (2007), Promoting tourism destination image, Journal of Travel Research, 46(1) 15–23. doi: 10.1177/0047287507302374.

Gunasekaran, S. (2010), Computer Vision Systems, Jha, S. N. (Ed.), Nondestructive evaluation of food Quality, Springer, Berlin, pp. 41-72. doi: 10.1007/978-3-642-15796-7_3.

Gurung, D. J. & Goswami, C. (2017), Role of user generated content in destination image formation, International Journal of Tourism and Travel, 10(1), 6-16.

Harrington, P. (2012), Machine Learning in Action, Manning Publications Co., New York.

Hu, Y., Manikonda, L. & Kambhampati, S. (2014), What We Instagram: A First Analysis of Instagram Photo Content and User Types, in Adar, E. & Resnick, P. (Ed.s), Proceedings of the 8th International Conference on Weblogs and Social Media, ICWSM 2014, Association for the Advancement of Artificial Intelligence, California, USA, pp. 595-598.

Hunt, J. D. (1975), Image as a factor in tourism development. Journal of Travel Research, 13(3), 1-7.

Jang, J. Y., Han, K., and Lee, D. (2015), No Reciprocity in “liking” photos”, in Yesilada, Y., Farzan, R. and Houben, G.J. (Ed.s), Proceedings of the 26th ACM Conference on Hypertext and Social Media - HT ’15, The Association for Computing Machinery, New York, USA, pp. 273–282. doi: 10.1145/2700171.2791043

Janša, T., Wattanacharoensil, W. & Kolar, T. (2020), Computer supported analysis of Thailand’s imagery on Pinterest, Current Issues in Tourism, 23(15), 1833–1839. doi: 10.1080/13683500.2019.1631761.

Jatnika, D., Bijaksana, M. A. & Suryani, A. A. (2019), Word2Vec model analysis for semantic similarities in English words, Procedia Computer Science, 157, 160–167. doi: 10.1016/j.procs.2019.08.153.

Kim, S.-E., Lee, K. Y., Shin, S. Il & Yang, S.-B. (2017), Effects of tourism information quality in social media on destination image formation: The case of Sina Weibo, Information and Management, 54(6), 687–702. doi: 10.1016/j.im.2017.02.009.

Koruyan, K. & Karagöz, E. (2018), Bir bölgenin destinasyon i̇majı ve sosyal ağların reklam için etkin kullanımı: İzmir Sığacık örneği, in İlter, H.K. (Ed.), 5th International Conference on Management Information Systems (IMISC 2018), Ankara Yıldırım Beyazıt University, MIS Department, Ankara, Turkey, doi: 10.6084/m9.figshare.7582070.v1.

Lee C. S., Abu Bakar N. A. B., Muhammad Dahri R. B. & Sin SC. J. (2015), Instagram this! Sharing photos on Instagram, Allen, R., Hunter, J. and Zeng, M. (Ed.s), Digital libraries: Providing quality information. ICADL 2015. Lecture notes in computer science, vol 9469, Springer, Cham, pp. 132-141. doi: 10.1007/978-3-319-27974-9_13.

Lee, E., Lee, J.-A., Moon, J. H. & Sung, Y. (2015), Pictures speak louder than words: Motivations for using Instagram, Cyberpsychology, Behavior, and Social Networking, 18(9), 552–556. doi: 10.1089/cyber.2015.0157.

Lin, M.S., Liang, Y., Xue, J.X., Pan, B. & Schroeder, A. (2021), Destination image through social media analytics and survey method, International Journal of Contemporary Hospitality Management, 33(6), 2021 pp. 2219-2238. doi: 10.1108/IJCHM-08-2020-0861.

Ma, Y., Xiang, Z., Du, Q. & Fan, W. (2018), Effects of user-provided photos on hotel review helpfulness: An analytical approach with deep leaning, International Journal of Hospitality Management, 71, 120–131. doi: 10.1016/j.ijhm.2017.12.008.

Mak, A. H. N. (2017), Online destination image: Comparing national tourism organisation’s and tourists’ perspectives, Tourism Management, 60, 280–297. doi: 10.1016/j.tourman.2016.12.012.

Mikolov, T., Chen, K., Corrado, G. & Dean, J. (2013), Efficient Estimation of Word Representations in Vector Space. in Bengio, Y. & LeCun, Y. (Ed.s), 1st International Conference on Learning Representations, ICLR 2013 Workshop Track Proceedings, Arizona, USA, pp. 1-12.

Mittal, V., Kaul, A., Gupta, S. Sen & Arora, A. (2017), Multivariate features based Instagram post analysis to enrich user experience, Procedia Computer Science, 122, 138–145. doi: 10.1016/j.procs.2017.11.352.

Molinillo, S., Liébana-Cabanillas, F. & Anaya-Sánchez, R. (2017), Destination image on the DMO’s platforms: Official website and social media, Tourism and Management Studies, 13(3), 5–14. doi: 10.18089/tms.2017.13301.

Molinillo, S., Liébana-Cabanillas, F., Anaya-Sánchez, R. & Buhalis, D. (2018), DMO online platforms: Image and intention to visit, Tourism Management, 65, 116–130. doi: 10.1016/j.tourman.2017.09.021.

Mukhina, K. D., Rakitin, S. V. & Visheratin, A. A. (2017), Detection of tourists attraction points using Instagram profiles, Procedia Computer Science, 108, 2378–2382. doi: 10.1016/j.procs.2017.05.131.

Murphy, P., Pritchard, M. P. & Smith, B. (2000), The destination product and its impact on traveler perceptions, Tourism Management, 21(1), 13-52.

Nikjoo, A. & Bakhshi, H. (2019), The presence of tourists and residents in shared travel photos, Tourism Management, 70, 89–98. doi: 10.1016/j.tourman.2018.08.005.

Özdemir, G. & Çelebi, D. (2015), Reflections of Destinations on Social Media, Katsoni, V. (Ed.), Cultural tourism in a digital era, Springer, Cham, pp. 243-249. doi: 10.1007/978-3-319-15859-4_21.

Paül i Agustí, D. (2018), Characterizing the location of tourist images in cities. Differences in user-generated images (Instagram), official tourist brochures and travel guides, Annals of Tourism Research, 73, 103–115. doi: 10.1016/j.annals.2018.09.001

Pennington, C., Socher, R. & Manning, C. D. (2014), Glove: Global Vectors for Word Representation. in Moschitti, A. (Ed.), Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Association for Computational Linguistics, Pennsylvania, USA, pp. 1532–1543.

Ramanathan, R. (2016), Google Cloud Vision API enters beta, open to all to try!, available at: https://cloud.google.com/blog/products/gcp/google-cloud-vision-api-enters-beta-open-to-all-to-try (accessed 13 December 2021).

Řehůřek, R. & Sojka, P. (2010), Software framework for topic modelling with large corpora, in Witte, R., Cunningham, H., Patrick, I., Beisswanger, E., Buyko, E., Hahn, U, Verspoor, K. and Coden, A.R. (Ed.s), Proceedings of LREC 2010 Workshop New Challenges for NLP Frameworks, European Language Resources Association, Valletta, Malta, pp. 46–50.

Rossi, L., Boscaro, E., & Torsello, A. (2018), Venice through the lens of Instagram, in Champin, P.A., Gandon, F. and Medini, C. (Ed.s), WWW '18: Companion Proceedings of the Web Conference 2018, International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, Switzerland, pp. 1190–1197. doi: 10.1145/3184558.3191557

Rousseeuw, P. J. (1987), Silhouettes: A graphical aid to the interpretation and validation of cluster analysıs, Journal of Computational and Applied Mathematics, 20, 53–65. doi: 10.1016/0377-0427(87)90125-7.

Sheldon, P. & Bryant, K. (2016), Instagram: Motives for its use and relationship to narcissism and contextual age, Computers in Human Behavior, 58, 89–97. doi: 10.1016/j.chb.2015.12.059.

Shuqair, S. & Cragg, P. (2017), The immediate impact of Instagram posts on changing the viewers’ perceptions towards travel destinations, Asia Pacific Journal of Advanced Business and Social Studies, 3(2), 1-12. doi: 10.25275/apjabssv3i2bus1.

Snyder, W. E. & Qi, H. (2017), Fundamentals of Computer Vision, Cambridge University Press, Cambridge.

Song, S.-G. & Kim, D.-Y. (2016), A pictorial analysis of destination images on Pinterest: The Case of Tokyo, Kyoto, and Osaka, Japan, Journal of Travel and Tourism Marketing, 33(5), 687–701. doi: 10.1080/10548408.2016.1167384.

Speer, R., Chin, J. & Havasi, C. (2017), ConceptNet 5.5: An open multilingual graph of general knowledge, available at: https://arxiv.org/pdf/1612.03975.pdf (accessed 15 December 2021).

Statista (2018), Number of monthly active Instagram users from January 2013 to June 2018, available at: https://www.statista.com/statistics/253577/number-of-monthly-active-instagram-users/ (accessed 10 December 2021).

Steinbach, M., Karypis, G., & Kumar, V. (2000), A comparison of document clustering techniques, available at: https://conservancy.umn.edu/bitstream/handle/11299/215421/00-034.pdf?sequence=1&isAllowed=y (accessed 13 December 2021).

Stepchenkova, S. & Mills, J.E. (2010), Destination image: A meta-analysis of 2000–2007 research, Journal of Hospitality Marketing & Management, 19(6), 575-609, doi: 10.1080/19368623.2010.493071

Stepchenkova, S. & Zhan, F. (2013), Visual destination images of Peru: Comparative content analysis of DMO and user-generated photography, Tourism Management, 36, 590–601. doi: 10.1016/j.tourman.2012.08.006.

Taecharungroj, V. & Mathayomchan, B. (2020), The big picture of cities: Analysing Flickr photos of 222 cities worldwide, Cities, 102 No. 102741, pp. 1-32. doi: 10.1016/j.cities.2020.102741.

Tasci, A.D.A. & Gartner, W.C. (2007), Destination image and its functional relationships, Journal of Travel Research, 45(4), 413–425. doi: 10.1177/0047287507299569.

Ting, H., Ming, W. W. P., de Run, E. C. & Choo, S. L. Y. (2015), Beliefs about the use of Instagram: An exploratory study, International Journal of Business and Innovation, 2(2), 15-31.

Ucan, A. & Akcapinar Sezer, E. (2019), A new approach on emotion analogy by using word embeddings, paper presented at the 2019 27th Signal Processing and Communications Applications Conference (SIU), Sivas, Turkey, available at: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8806475 (accessed 6 December 2021).

Zeng, B. & Gerritsen, R. (2014), What do we know about social media in tourism? A review, Tourism Management Perspectives, 10, 27-36.

Zhang, K., Chen, Y. & Li, C. (2019), Discovering the tourists’ behaviors and perceptions in a tourism destination by analyzing photos’ visual content with a computer deep learning model: The case of Beijing, Tourism Management, 75, 595–608. doi: 10.1016/j.tourman.2019.07.002.

Zhao, Z., Zhu, M. & Hao, X. (2018), Share the gaze: Representation of destination image on the Chinese social platform WeChat Moments, Journal of Travel and Tourism Marketing, 35(6), 726–739. doi: 10.1080/10548408.2018.1432449.

Published

03/13/2023

How to Cite

KORUYAN, K., & AKTAŞ, E. (2023). Destination Image Analysis with User-Generated Content: A Computer Vision and Machine Learning Approach. Journal of Tourism & Gastronomy Studies, 10(3), 2126–2143. https://doi.org/10.21325/jotags.2022.1085