Gıda Mühendisliği ve Gastronomi Bilimi: Ortak Yaklaşımlar ve Ortak Gelişim (Food Engineering and Gastronomy: Common Approaches and Joint Development)
DOI:
https://doi.org/10.21325/jotags.2020.621Keywords:
Food engineering, Molecular gastronomy, Cooking, Unit operations, 3-D food printersAbstract
Social lifestyle has led changes of the consumers' eating habits day by day. Consumers' orientation towards healthy food and personalized food has brought the food industry to a different point. Whereas food engineering is mostly concerned with the industrial processes of foods, gastronomy is generally considered as a social science and arts branch that interacts with tourism. While food engineers take part in industrial processes and laboratory studies, chefs in gastronomy work in the kitchen. On the other hand, the main subject of both branches of science is food. The purpose of this review study is to address issues where food engineers and chefs can meet at a common point and broaden their vision and provide a basis for future studies in food engineering and gastronomy. Today, with the development of technology, health-focused and sustainable foods can be produced with the introduction of various equipment and techniques into the kitchens and the concept of molecular gastronomy which is gaining importance. In the study, the concepts of food engineering, gastronomy and molecular gastronomy were explained in detail in order to take interest of both partners, and information was given about engineering, unit operations, measuring techniques and material science that take part in the kitchens. In addition, innovative technologies in the fields of food engineering and gastronomy were detailed and information was also given about 3-D food printers.
References
Aguilera, J. M. (2012). The engineering inside our dishes. International Journal of Gastronomy and Food Science, 1(1), 31-36. doi:10.1016/j.ijgfs.2011.11.006
Aguilera, J. M. (2017). The emergence of gastronomic engineering. Innovative Food Science & Emerging Technologies, 41, 277-283. doi:10.1016/j.ifset.2017.03.017
Aguilera, J. M. (2018). Relating food engineering to cooking and gastronomy. Comprehensive Reviews in Food Science and Food Safety, 17(4), 1021-1039. doi:10.1111/1541-4337.12361
Aguilera, J. M., & Stanley, D. W. (1985). A review of textural defects in cooked reconstituted legumes–the influence of storage and processing. Journal of Food Processing and Preservation, 9(3), 145-169. doi:10.1111/j.1745-4549.1985.tb00716.x
Aguilera, J. M., & Stanley, D. W. (1999). Microstructural principles of food processing and engineering (2nd ed.). Gaithersburg, MD: Aspen Publishers Inc.
Aguilera, J. M., Lillford, P. J., & Watzke, H. (2008). Why food materials science?. In J. M. Aguilera, P. J. Lillford (Eds.), Food Materials Science (pp. 3-10). New York: Springer. doi:10.1007/978-0-387-71947-4_1
Baiano, A. (2020). 3D Printed Foods: A comprehensive review on technologies, nutritional value, safety, consumer attitude, regulatory framework, and economic and sustainability issues. Food Reviews International, 1-31. doi:10.1080/87559129.2020.1762091
Baldwin, D. E. (2012). Sous vide cooking: A review. International Journal of Gastronomy and Food Science, 1(1), 15-30. doi:10.1016/j.ijgfs.2011.11.002
Barham, P., Skibsted, L. H., Bredie, W. L. P., Bom Frøst, M., Møller, P., Risbo, J., … Mortensen, L. M. (2010). Molecular gastronomy: a new emerging scientific discipline. Chemical Reviews, 110(4), 2313-2365. doi:10.1021/cr900105w
Bayod, E., Willers, E. P., & Tornberg, E. (2008). Rheological and structural characterization of tomato paste and its influence on the quality of ketchup. LWT-Food Science and Technology, 41(7), 1289-1300. doi:10.1016/j.foodcont.2019.03.001
Blikra, M. J., Skipnes, D., & Feyissa, A. H. (2019). Model for heat and mass transport during cooking of cod loin in a convection oven. Food Control, 102, 29-37. doi:10.1016/j.foodcont.2019.03.001
Brookmire, L., Mallikarjunan, P., Jahncke, M., & Grisso, R. (2013). Optimum cooking conditions for shrimp and Atlantic salmon. Journal of Food Science, 78(2), S303-S313. doi:10.1111/1750-3841.12011
Bucak, T., & Aracı, Ü. E. (2013). Türkiye’de gastronomi turizmi üzerine genel bir değerlendirme. Balıkesir Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 16(30), 203-216. https://dergipark.org.tr/en/pub/baunsobed/issue/50175/645684 adresinden alınmıştır.
Caporaso, N., & Formisano, D. (2016). Developments, applications, and trends of molecular gastronomy among food scientists and innovative chefs. Food Reviews International, 32(4), 417-435. doi:10.1080/87559129.2015.1094818
Carvalho, M. J., Pérez-Palacios, T., & Ruiz-Carrascal, J. (2017). Physico-chemical and sensory characteristics of freeze-dried and air-dehydrated yogurt foam. LWT-Food Science and Technology, 80, 328-334. doi:10.1016/j.lwt.2017.02.039
Cassi, D. (2004). Science and cooking combine at gastronomic physics lab in Italy. Physics Education-London, 38(1), 108-108. doi: 10.1088/0031-9120/39/1/M06
Cassi, D. (2011). Science and cooking: the era of molecular cuisine. EMBO Reports, 12(3), 191-196. doi:10.1038/embor.2011.18
Chaney, S., & Ryan, C. (2012). Analyzing the evolution of Singapore's World Gourmet Summit: An example of gastronomic tourism. International Journal of Hospitality Management, 31(2), 309-318. doi:10.1016/j.ijhm.2011.04.002
Charm, S. E. (1971). The fundamentals of food engineering (2nd edition). Westport, Connecticut, USA: AVI Publishing Co., Inc..
Chen, J., Mu, T., Goffin, D., Blecker, C., Richard, G., Richel, A., & Haubruge, E. (2019). Application of soy protein isolate and hydrocolloids based mixtures as promising food material in 3D food printing. Journal of Food Engineering, 261, 76-86. doi:10.1016/j.jfoodeng.2019.03.016
Cheng, M., Ogbeide, G. C. A., & Hamouz, F. L. (2011). The development of culinary arts and food science into a new academic Discipline-Culinology®. Journal of Culinary Science & Technology, 9(1), 17-26. doi:10.1080/15428052.2011.558461
Corradini, M. G., & Peleg, M. (2008). Solid food foams. In J. M. Aguilera, P. J. Lillford (Eds.), Food Materials Science (pp. 169-202). Springer, New York: Springer. doi: 10.1007/978-0-387-71947-4_10
Crosby, G. (2012). The science of good cooking: Master 50 simple concepts to enjoy a lifetime of success in the kitchen. Brookline, MA: America´s Test Kitchen.
Dankar, I., Haddarah, A., Omar, F. E., Sepulcre, F., & Pujolà, M. (2018). 3D printing technology: The new era for food customization and elaboration. Trends in Food Science & Technology, 75, 231-242. doi:10.1016/j.tifs.2018.03.018
Datta, A. K., & Rakesh, V. (2013). Principles of microwave combination heating. Comprehensive Reviews in Food Science and Food Safety, 12(1), 24-39. doi:10.1111/j.1541-4337.2012.00211.x
Debaste, F., Kegelaers, Y., Liégeois, S., Amor, H. B., & Halloin, V. (2008). Contribution to the modelling of chocolate tempering process. Journal of Food Engineering, 88(4), 568-575. doi:10.1016/j.jfoodeng.2008.03.019
Derbyshire, P. M., & Owen, I. (1988). Transient heat transfer in a boiled potato: a study related to food process engineering. International Journal of Heat and Fluid Flow, 9(2), 254-256. doi:10.1016/0142-727X(88)90081-1
Dickinson, E. (2006). Colloid science of mixed ingredients. Soft Matter, 2, 642–652. doi:10.1039/B605670A
Du, C. J., Iqbal, A., & Sun, D. W. (2016). Quality measurement of cooked meats. In D. Sun, (Ed.), Computer vision technology for food quality evaluation (2nd edition) (pp. 195-212). Connecticut, MA: Academic Press. doi: 10.1016/B978-0-12-802232-0.00008-6
Edreschi, F. P., Mery, D., Mendoza, F., & Aguilera, J. M. (2004). Classification of potato chips using pattern recognition. Journal of Food Science, 69(6), E264-E270. doi:10.1111/j.1365-2621.2004.tb10996.x
Flick, D. (2014). Les transferts thermiques en cuisine. In C. Lavelle (Ed.), Science culinaire: Matiere, procedes, degustation (pp. 265–296). Paris: Belin.
Fu, H., Liu, Y., Adrià, F., Shao, X., Cai, W., & Chipot, C. (2014). From material science to avant-garde cuisine. The art of shaping liquids into spheres. The Journal of Physical Chemistry B, 118(40), 11747-11756. doi:10.1021/jp508841p
Galdeano, J. A. L. (2014). 3D Printing Food: The Sustainable Future. (Master Thesis, Kaunas University of Technology, Institute of Envirnonmental Engineering, 2004). https://core.ac.uk/reader/41817540 adresinden alınmıştır.
García-Segovia, P., Barreto-Palacios, V., Bretón, J., & Martínez-Monzó, J. (2011). Microencapsulation of essential oils using β-cyclodextrin: Applications in gastronomy. Journal of Culinary Science & Technology, 9(3), 150-157. doi:10.1080/15428052.2011.594728
García-Segovia, P., Garrido, M. D., Vercet, A., Arboleya, J. C., Fiszman, S., Martínez-Monzo, … Ruiz, J. (2014). Molecular Gastronomy in Spain. Journal of Culinary Science & Technology, 12(4), 279-293. doi:10.1080/15428052.2014.914813
Gillespie, C., & Cousins, J. A. (2001). European gastronomy into the 21st century. Oxford: Butterworth-Heinemann (Elsevier).
Godoi, F. C., Prakash, S., & Bhandari, B. R. (2016). 3d printing technologies applied for food design: Status and prospects. Journal of Food Engineering, 179, 44-54. doi:10.1016/j.jfoodeng.2016.01.025
Guo, C., Zhang, M., & Bhandari, B. (2019). Model building and slicing in food 3D printing processes: a review. Comprehensive Reviews in Food Science and Food Safety, 18(4), 1052-1069. doi:10.1111/1541-4337.12443
Gutiérrez-López, G. F., Welti-Chanes, J., & Parada-Arias, E. (2008). Food engineering: integrated approaches. New York: Springer Science & Business Media.
Güneş, E., Bayram, Ş. B., Özkan, M., & Nizamlıoğlu, H. F. (2018). Gastronomy four zero (4.0). International Journal of Environmental Pollution and Environmental Modelling, 1(3), 77-84.
Hadiyanto, H. (2013). Experimental validation of product quality model for bread baking process. International Food Research Journal, 20(3), 1427-1434.
Hamilton, C. A., Alici, G., & in het Panhuis, M. (2018). 3D printing Vegemite and Marmite: Redefining “breadboards”. Journal of Food Engineering, 220, 83-88. doi:10.1016/j.jfoodeng.2017.01.008
Hao, L., Mellor, S., Seaman, O., Henderson, J., Sewell, N., & Sloan, M. (2010). Material characterisation and process development for chocolate additive layer manufacturing. Virtual and Physical Prototyping, 5(2), 57-64. doi:10.1080/17452751003753212
Hartel, R. W., Ergun, R., & Vogel, S. (2011). Phase/state transitions of confectionery sweeteners: Thermodynamic and kinetic aspects. Comprehensive Reviews in Food Science and Food Safety, 10(1), 17-32. doi:10.1111/j.1541-4337.2010.00136.x
Heldman, D. R. (2006). President's Message IFT and the Food Science Profession. Food Technology-Chicago, 60(10), 11-11.
Heldman, D. R., & Lund, D. B. (2010). The beginning, current, and future of food engineering: A perspective. In J. Aguilera., R. Simpson, J. Welti-Chanes, D. Bermudez-Aguirre, Barbosa-Cánovas G. (Eds.), Food Engineering interfaces (pp. 3-18). New York: Springer. doi: 10.1007/978-1-4419-7475-4_1
Hill, M. (2004). Product and process design for structured products. AIChE Journal, 50(8), 1656-1661. doi:10.1002/aic.10293
Horigane, A. K., Naito, S., Kurimoto, M., Irie, K., Yamada, M., Motoi, H., & Yoshida, M. (2006). Moisture distribution and diffusion in cooked spaghetti studied by NMR imaging and diffusion model. Cereal Chemistry, 83(3), 235-242. doi:10.1094/CC-83-0235
Hunter, R., & Koukouzika, D. (2015). Food in Greek Literature. In J. Wilkins, R. Nadeau (Eds.), A companion to food in the ancient world (pp. 19-29). Chichester: John Wiley & Sons. doi:10.1002/9781118878255.ch1
Ibarz, A., Gonzalez, C., & Barbosa-Cánovas, G. V. (2004). Kinetic models for water adsorption and cooking time in chickpea soaked and treated by high pressure. Journal of Food Engineering, 63(4), 467-472. doi:10.1016/j.jfoodeng.2003.09.008
Ishwarya, S. P., Anandharamakrishnan, C., & Stapley, A. G. (2015). Spray-freeze-drying: a novel process for the drying of foods and bioproducts. Trends in Food Science & Technology, 41(2), 161-181. doi:10.1016/j.tifs.2014.10.008
Isleroglu, H., & Kaymak-Ertekin, F. (2016). Modelling of heat and mass transfer during cooking in steam-assisted hybrid oven. Journal of Food Engineering, 181, 50-58. doi:10.1016/j.jfoodeng.2016.02.027
Isleroglu, H., Sakin-Yilmazer, M., Kemerli-Kalbaran, T., Üren, A., & Kaymak-Ertekin, F. (2017). Kinetics of colour, chlorophyll, and ascorbic acid content in spinach baked in different types of oven. International Journal of Food Properties, 20(11), 2456-2465. doi:10.1080/10942912.2016.1240689
Jittanit, W., Khuenpet, K., Kaewsri, P., Dumrongpongpaiboon, N., Hayamin, P., & Jantarangsri, K. (2017). Ohmic heating for cooking rice: Electrical conductivity measurements, textural quality determination and energy analysis. Innovative Food Science & Emerging Technologies, 42, 16-24. doi:10.1016/j.ifset.2017.05.008
Karel, M. (1997). The history and future of food engineering. In Fito, P., Ortega, E., Barbosa-Cánovas, G. V., (Eds), Food Engineering 2000 (pp. 3-19). New York: Chapman & Hall.
Karizaki, V. M. (2016). Kinetic modeling and determination of mass transfer parameters during cooking of rice. Innovative Food Science & Emerging Technologies, 38, 131-138. doi:10.1016/j.ifset.2016.09.017
Kessler, H. G. (1981). Food engineering and dairy technology. Fresing: Verlag A. Kessler.
Kietzmann, J., Pitt, L., & Berthon, P. (2015). Disruptions, decisions, and destinations: Enter the age of 3-D printing and additive manufacturing. Business Horizons, 58(2), 209-215. doi:10.1016/j.bushor.2014.11.005
King, C. J. (1971). Freeze-drying of foods. London, UK: Butterworth & Co.(Publishers) Ltd..
King, W. D. (2008). The physics of a stove-top espresso machine. American Journal of Physics, 76(6), 558-565. doi:10.1119/1.2870524
Kivela, J., & Crotts, J. C. (2006). Tourism and gastronomy: Gastronomy's influence on how tourists experience a destination. Journal of Hospitality & Tourism Research, 30(3), 354-377. doi:10.1177/1096348006286797
Knorr, D., Froehling, A., Jaeger, H., Reineke, K., Schlueter, O., & Schoessler, K. (2011). Emerging technologies in food processing. Annual Review of Food Science and Technology, 2, 203-235. doi:10.1146/annurev.food.102308.124129
Kondjoyan, A., Portanguen, S., Duchène, C., Mirade, P. S., & Gandemer, G. (2018). Predicting the loss of vitamins B3 (niacin) and B6 (pyridoxamine) in beef during cooking. Journal of Food Engineering, 238, 44-53. doi:10.1016/j.jfoodeng.2018.06.008
Krasnow, M. N., Hirson, G. D., & Shoemaker, C. F. (2011). Effects of cooking temperatures and starch source on the gelatinization and thickening power of roux. Journal of Culinary Science & Technology, 9(4), 247-260. doi:10.1080/15428052.2011.627251
Labuza, T. P. (1984). Application of chemical kinetics to deterioration of foods. Journal of Chemical Education, 61, 348–354. doi:10.1021/ed061p348
Latifoğlu, A.H. (2020). Sokak yemeklerinin bilinirlik, beğeni, gastronomik hareketlilik ve gıda güvenliği açısından incelenmesi. (Yüksek Lisans Tezi, Abant İzzet Baysal Üniversitesi, Sosyal Bilimler Enstitüsü Gastronomi ve mutfak sanatları Anabilim Dalı, Bolu, 2020). https://tez.yok.gov.tr/UlusalTezMerkezi/tezSorguSonucYeni.jsp adresinden alınmıştır (Tez no.: 612726).
Laurent, B., Jean-Blaise, T., & Carl, M. M. (2008). PC-based instrumentation system for the study of bean cooking kinetic. Journal of Applied Sciences, 8(6), 1103-1107. doi:10.3923/jas.2008.1103.1107
Le Révérend, B. J. D., Fryer, P. J., & Bakalis, S. (2009). Modelling crystallization and melting kinetics of cocoa butter in chocolate and application to confectionery manufacturing. Soft Matter, 5(4), 891-902. doi:10.1039/B809446B
Le Tohic, C., O'Sullivan, J. J., Drapala, K. P., Chartrin, V., Chan, T., Morrison, A. P., … Kelly, A. L. (2018). Effect of 3D printing on the structure and textural properties of processed cheese. Journal of Food Engineering, 220, 56-64. doi:10.1016/j.jfoodeng.2017.02.003
Licciardello, F., Frisullo, P., Laverse, J., Muratore, G., & Del Nobile, M. A. (2012). Effect of sugar, citric acid and egg white type on the microstructural and mechanical properties of meringues. Journal of Food Engineering, 108(3), 453-462. doi:10.1016/j.jfoodeng.2011.08.021
Lipton, J. I., Cutler, M., Nigl, F., Cohen, D., & Lipson, H. (2015). Additive manufacturing for the food industry. Trends in Food Science & Technology, 43(1), 114-123. doi:10.1016/j.tifs.2015.02.004
Lister, T., & Blumenthal, H. (2005). Kitchen chemistry. London: Royal Society of Chemistry.
Liu, Z., Zhang, M., Bhandari, B., & Yang, C. (2018). Impact of rheological properties of mashed potatoes on 3D printing. Journal of Food Engineering, 220, 76-82. doi:10.1016/j.jfoodeng.2017.04.017
Loss, C. R., & Bouzari, A. (2016). On food and chemesthesis–food science and culinary perspectives. In S. T.
McDonald, D. A. Bolliet, J. E. Hayes (Eds.), Chemesthesis: Chemical touch in food and eating (pp. 250-267). Oxford: John Wiley & Sons.
McGee, H. J., Long, S. R., & Briggs, W. R. (1984). Why whip egg whites in copper bowls?. Nature, 308, 667-668. doi:10.1038/308667a0
Mery, D., Chanona-Pérez, J. J., Soto, A., Aguilera, J. M., Cipriano, A., Veléz-Rivera, N., … Gutiérrez-López, G. F. (2010). Quality classification of corn tortillas using computer vision. Journal of Food Engineering, 101(4), 357-364. doi:10.1016/j.jfoodeng.2010.07.018
Mezzenga, R., Schurtenberger, P., Burbidge, A., & Michel, M. (2005). Understanding foods as soft materials. Nature Materials, 4(10), 729-740. doi:10.1038/nmat1496
Miller, E., & Hartel, R. W. (2015). Sucrose crystallization in caramel. Journal of Food Engineering, 153, 28-38. doi:10.1016/j.jfoodeng.2014.11.028
Mizrahi, M., Golan, A., Mizrahi, A. B., Gruber, R., Lachnise, A. Z., & Zoran, A. (2016). Digital gastronomy: Methods & recipes for hybrid cooking. In Proceedings of the 29th Annual Symposium on User Interface Software and Technology (pp. 541-552). New York: Association for Computing Machinery.
Murthy, C. T., & Bhattacharya, S. (2008). Cryogenic grinding of black pepper. Journal of Food Engineering, 85(1), 18-28. doi:10.1016/j.jfoodeng.2007.06.020
Niranjan, K. (2017). Re-engineering food engineering. The Chemical Engineer, 909, 30-33. http://centaur.reading.ac.uk/70389/ adresinden alınmıştır.
Öney, H. (2013). Gastronomi turizmi. S. Bahçe (Ed.) Alternatif turizm (1. Baskı) (pp.158-189). Eskişehir: Anadolu Üniversitesi Yayınları 158.
Özgen, I. (2016). Uluslararası gastronomiye genel bakış. M. Sarıışık (Ed.) Uluslararası gastronomi (pp. 1-32). Ankara: Detay Yayıncılık. 1-2.
Parker, K., & Vollmer, M. (2004). Bad food and good physics: the development of domestic microwave cookery. Physics Education, 39(1), 82-90. doi:10.1088/0031-9120/39/1/007
Payne, C. R., & Labuza, T. P. (2005). The brittle-ductile transition of an amorphous food system. Drying Technology, 23(4), 871-886. doi:10.1081/DRT-200054235
Perdue, R., & Marcondes, J. (2010). Vacuum packaging. In K. L. Yam (Ed.), The Wiley encyclopedia of packaging technology (pp. 1259–1264). Hoboken, NJ: John Wiley & Sons. doi:10.1002/9780470541395.ch21
Pouliot, Y., Conway, V., & Leclerc, P. L. (2014). Separation and concentration technologies in food processing. In S. Clark, S. Jung, B. Lamsan (Eds.), Food processing: principles and applications (pp. 33-60). Chichester: John Wiley & Sons. doi:10.1002/9781118846315.ch3
Reynolds, M. (2017). AI suggests recipe for a dish just by studying a photo of it. New Scientist, 235(3136), 10.
Rodgers, S. (2009). The state of technological sophistication and the need for new specialised tertiary degrees in food services. International Journal of Hospitality Management, 28(1), 71-77. doi:10.1016/j.ijhm.2008.04.001
Rodgers, S., & Young, N. W. (2008). The potential role of latest technological developments including industrial gastronomy in functional meal design. Journal of Culinary Science & Technology, 6(2-3), 170-187. doi:10.1080/15428050802338977
Ruiz, J., Calvarro, J., Sánchez del Pulgar, J., & Roldán, M. (2013). Science and technology for new culinary techniques. Journal of Culinary Science & Technology, 11(1), 66-79. doi:10.1080/15428052.2013.755422
Sadeghi, F., Hamdami, N., Shahedi, M., & Rafe, A. (2016). Numerical modeling of heat and mass transfer during contact baking of flat bread. Journal of Food Process Engineering, 39(4), 345-356. doi: 10.1111/jfpe.12227
Saha, D., & Bhattacharya, S. (2010). Hydrocolloids as thickening and gelling agents in food: a critical review. Journal of Food Science and Technology, 47(6), 587-597. doi:10.1007/s13197-010-0162-6
Santich, B. (2004). The study of gastronomy and its relevance to hospitality education and training. International Journal of Hospitality Management, 23(1), 15-24. doi:10.1016/S0278-4319(03)00069-0
Sarıışık, M., & Özbay, G. (2015). Gastronomi turizmi üzerine bir literatür incelemesi. Anatolia: Turizm Araştırmaları Dergisi, 26(2), 264-278. doi:10.17123/atad.vol26iss218417
Scholten, E. (2017). Composite foods: from structure to sensory perception. Food & Function, 8(2), 481-497. doi:10.1039/C6FO01099G
Severini, C., Derossi, A., & Azzollini, D. (2016). Variables affecting the printability of foods: Preliminary tests on cereal-based products. Innovative Food Science & Emerging Technologies, 38, 281-291. doi:10.1016/j.ifset.2016.10.001
Severini, C., Derossi, A., Ricci, I., Caporizzi, R., & Fiore, A. (2018). Printing a blend of fruit and vegetables. New advances on critical variables and shelf life of 3D edible objects. Journal of Food Engineering, 220, 89-100. doi:10.1016/j.jfoodeng.2017.08.025
Shinde, Y. H., Vijayadwhaja, A., Pandit, A. B., & Joshi, J. B. (2014). Kinetics of cooking of rice: a review. Journal of Food Engineering, 123, 113-129. doi:10.1016/j.jfoodeng.2013.09.021
Singh, R. P. (1997). Food engineering curricula: North American and Asian perspectives. In P. Fito, E. Ortega, G.
V. Barbosa-Cánovas (Eds.), Food Engineering 2000 (pp. 367-375). New York: Chapman & Hall.
Singh, R. P., & Heldman, D. R. (2014). Introduction to food engineering. Houston: Gulf Professional Publishing.
Smithers, G. W. (2016). Food science-yesterday, today, and tomorrow. Reference Module in Food Science, 1-11. doi: 10.1016/B978-0-08-100596-5.03337-0
Srikiatden, J., & Roberts, J. S. (2007). Moisture transfer in solid food materials: A review of mechanisms, models, and measurements. International Journal of Food Properties, 10, 739–777. doi:10.1080/10942910601161672
Sun, D. W. (2014). Emerging technologies for food processing. London: Academic Press (Elsevier).
Sweeney, M., Dols, J., Fortenbery, B., & Sharp, F. (2014). Induction cooking technology design and assessment. [Consulted August 20th, 2016] ACEEE Summer Study on Energy E-ciency in Buildings (pp 370-379).
Tess, (2016). 3ders.org - columbia scientists are developing a 3D food printer that can cook your food | 3D Printer News & 3D Printing News. http://www.3ders.org/articles/20160801-columbia-engineers-are-developing-a-3dfood-printer that-can-cook-your-food.html. adresinden alınmıştır.
This, H. (2006). Molecular gastronomy: exploring the science of flavor. New York: Columbia University Press.
This, H. (2013). Molecular gastronomy is a scientific discipline, and note by note cuisine is the next culinary trend. Flavour, 2(1), 1-8. doi:10.1186/2044-7248-2-1
Thomas, C., Norman, E. J., & Katsigris, C. (2014). Design and equipment for restaurants and foodservice: A management view. Hoboken, NJ: John Wiley & Sons, Inc.
Tolstoguzov, V. (2003). Some thermodynamic considerations in food formulation. Food Hydrocolloids, 17(1), 1-23. doi:10.1016/S0268-005X(01)00111-4
Tornberg, E. (2013). Engineering processes in meat products and how they influence their biophysical properties. Meat Science, 95(4), 871-878. doi:10.1016/j.meatsci.2013.04.053
Tunick, M. H., Onwulata, C. I., Thomas, A. E., Phillips, J. G., Mukhopadhyay, S., Sheen, S., … Cooke, P. H. (2013). Critical evaluation of crispy and crunchy textures: a review. International Journal of Food Properties, 16(5), 949-963. doi:10.1080/10942912.2011.573116
Valdovinos, M. (2010). Chef formulation and integration: Ensuring great food and food science together. In H. R.
Moskowitz, I. S. Saguy, & T. Straus (Eds.), An Integrated Approach to New Food Product Development (pp. 303–316). Boca Raton, FL: CRC Press.
van Boekel, M. A. J. S. (2009). Kinetic modeling of reactions in foods. Boca Raton, FL: CRC Press.
van der Sman, R. G. M., & van der Goot, A. J. (2009). The science of food structuring. Soft Matter, 5, 501–510. doi:10.1039/b718952b
Vega, C., & Ubbink, J. (2008). Molecular gastronomy: a food fad or science supporting innovative cuisine?. Trends in Food Science & Technology, 19(7), 372-382. doi:10.1016/j.tifs.2008.01.006
Vilgis, T. A. (2013). Texture, taste and aroma: multi-scale materials and the gastrophysics of food. Flavour, 2(12), 1-5. doi:10.1186/2044-7248-2-12
Vilgis, T. A. (2015). Soft matter food physics-the physics of food and cooking. Reports on Progress in Physics, 78(12), 124602. doi:10.1088/0034-4885/78/12/124602
Walstra, P. (2002). Physical chemistry of foods. New York: Marcel Dekker Inc.
Wang, L., Zhang, M., Bhandari, B., & Yang, C. (2018). Investigation on fish surimi gel as promising food material for 3D printing. Journal of Food Engineering, 220, 101-108. doi:10.1016/j.jfoodeng.2017.02.029
Wrangham, R., & Carmody, R. (2010). Human adaptation to the control of fire. Evolutionary Anthropology: Issues, News, and Reviews, 19(5), 187-199. doi:10.1002/evan.20275
Yang, F., Zhang, M., Bhandari, B., & Liu, Y. (2018). Investigation on lemon juice gel as food material for 3D printing and optimization of printing parameters. LWT-Food Science and Technology, 87, 67-76. doi:10.1016/j.lwt.2017.08.054
Yükseköğretim Kurumu. (2020). https://istatistik.yok.gov.tr/ adresinden alınmıştır.
Zoran, A. (2019). Cooking With Computers: The Vision of Digital Gastronomy [Point of View]. Proceedings of the IEEE, 107(8), 1467-1473. doi:10.1109/JPROC.2019.2925262
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Journal of Tourism & Gastronomy Studies

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


