Fotoğraflı mı Fotoğrafsız mı? Tüketici Geri Bildirimlerinin Uzunluğu ile Kullanıcı Derecelendirmeleri Arasındaki İlişkinin Çevrimiçi Restoran Yorumlarında Araştırılması (With or Without Photos? Investigation of the Interplay Between Consumer Feedback Length and User Ratings in Online Restaurant Reviews)
DOI:
https://doi.org/10.21325/jotags.2025.1682Keywords:
Online feedback mechanisms, Electronic word-of-mouth (eWOM), Text mining, Consumer behaviours, Google MapsAbstract
Electronic word-of-mouth (eWOM) is a significant research area that directly influences consumer decision-making through user-shared reviews on digital platforms. Consumers decide which hotel to stay in, which products are more beneficial to them, and even where to eat through informal eWOM communication. However, existing studies have relied solely on textual content, ignoring the role of visual elements such as photos in reviews and ratings. This study comparatively analyzed user reviews of restaurants in the Sivas city via text-mining, considering photo-sharing, review length, and language-use tendency factors. The study's main focuses include the correlation between star ratings and review length, the influence of visual content on feedback, and linguistic variations across different rating levels. The results indicate that consumers are more likely to write detailed and descriptive reviews when sharing visual content. Furthermore, a notable shift in linguistic usage is observed across different rating levels. Encouraging photo sharing on digital platforms can help businesses gather more consistent customer feedback and enhance their understanding of online restaurant profiles.
References
Aakash, A., & and Gupta Aggarwal, A. (2022). Assessment of Hotel Performance and Guest Satisfaction through eWOM: Big Data for Better Insights. International Journal of Hospitality & Tourism Administration, 23(2), 317-346. Routledge.
Abdullah, S., Van Cauwenberge, P., Vander Bauwhede, H., & O’Connor, P. (2024). Review Ratings, Sentiment in Review Comments, and Restaurant Profitability: Firm-Level Evidence. Cornell Hospitality Quarterly, 65(3), 378-392. SAGE Publications Inc.
Ağca, Y., & Gündüz, C. (2023). Türkiye’deki Otel Konuk Yorumları ve Puanlarının Metin Madenciliği ile Analizi. Yönetim ve Ekonomi Dergisi, 30(2), 397-411. Manisa Celal Bayar University.
Altıntaş, V., Albayrak, M., & Topal, K. (2021). Kanser hastalığı ile ilgili paylaşımlar için Dirichlet ayrımı ile gizli konu modelleme. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 36(4), 2183-2196. Gazi Üniversitesi.
Alzboun, G., Alhur, M., Khawaldah, H., & Alshurideh, M. (2023). Assessing gastronomic tourism using machine learning approach: The case of google review. International Journal of Data and Network Science, 7(3), 1131-1142.
An, Q., Ma, Y., Du, Q., Xiang, Z., & Fan, W. (2020). Role of user-generated photos in online hotel reviews: An analytical approach. Journal of Hospitality and Tourism Management, 45, 633-640.
Baek, H., Ahn, J., & Choi, Y. (2012). Helpfulness of Online Consumer Reviews: Readers’ Objectives and Review Cues. International Journal of Electronic Commerce, 17(2), 99-126. Routledge.
Bakır, M. (2019). SWARA ve MABAC Yöntemleri İle Havayolu İşletmelerinde eWOM’ a Dayalı Memnuniyet Düzeyinin Analizi. İzmir İktisat Dergisi, 34(1), 51-66. Dokuz Eylül Üniversitesi.
Baumeister, R. F., Bratslavsky, E., Finkenauer, C., & Vohs, K. D. (2001). Bad is Stronger than Good. Review of General Psychology, 5(4), 323-370. SAGE Publications Inc.
Berger, J. (2014). Word of mouth and interpersonal communication: A review and directions for future research. Journal of Consumer Psychology, 24(4), 586-607.
Bouras, C., & Tsogkas, V. (2013). Enhancing News Articles Clustering using Word N-Grams. (ss. 53-60). Program adı: DATA, Citeseer.
Broeder, P. (2022). Profile Photos’ Impact in Online Reviews: The Effect of Cultural Differences. Review of Marketing Science, 20(1), 21-36. De Gruyter.
Buell, R. W., Kim, T., & Tsay, C.-J. (2017). Creating Reciprocal Value Through Operational Transparency. Management Science, 63(6), 1673-1695. INFORMS.
Büyükeke, A., Sökmen, A., & Gencer, C. (2020). Metin Madenciliği ve Duygu Analizi Yöntemleri ile Sosyal Medya Verilerinden Rekabetçi Avantaj Elde Etme: Turizm Sektöründe Bir Araştırma (Gaining Competitive Advantage from Social Media Data with Text Mining and Sentiment Analysis Methods: A Research in T. Journal of Tourism & Gastronomy Studies, 8(1), 322-335.
Cai, D., Li, H., Law, R., Ji, H., & Gao, H. (2024). What drives consumers to post more photos in online reviews? A trait activation theory perspective. International Journal of Contemporary Hospitality Management, 36(12), 3989-4010. Emerald Publishing Limited.
Ceylan, G., Diehl, K., & Proserpio, D. (2024). Words Meet Photos: When and Why Photos Increase Review Helpfulness. Journal of Marketing Research, 61(1), 5-26. SAGE Publications Inc.
Chakraborty, G., & Krishna, M. (2014). Analysis of unstructured data: Applications of text analytics and sentiment mining. SAS global forum (ss. 1288-2014).
Chen, X., Zhao, B., & Yang, X. (2022). The obesogenity of restaurant food: Mapping the nutritional foodscape of Franklin County, Ohio using food review images. Applied Geography, 144, 102717.
Chittiprolu, V., Samala, N., & Bellamkonda, R. S. (2021). Heritage hotels and customer experience: A text mining analysis of online reviews. International Journal of Culture, Tourism and Hospitality Research, 15(2), 131-156. Emerald Publishing Limited.
Çalış, K., Gazdağı, O., & Yıldız, O. (2013). Reklam İçerikli Epostaların Metin Madenciliği Yöntemleri İle Otomatik Tespiti. Bilişim Teknolojileri Dergisi, 6(1), 1-7. Gazi University.
Çam, S. (2024a). Empowering Marketing Intelligence via Text Analytics. Marketing Innovation Strategies and Consumer Behavior (ss. 31-57). IGI Global. Geliş tarihi Ağustos 31, 2024, gönderen https://www.igi-global.com/chapter/empowering-marketing-intelligence-via-text-analytics/www.igi-global.com/chapter/empowering-marketing-intelligence-via-text-analytics/344348
Çam, S. (2024b). Empowering Marketing Intelligence via Text Analytics. Marketing Innovation Strategies and Consumer Behavior (ss. 31-57). IGI Global Scientific Publishing. Geliş tarihi Haziran 21, 2025, gönderen https://www.igi-global.com/chapter/empowering-marketing-intelligence-via-text-analytics/www.igi-global.com/chapter/empowering-marketing-intelligence-via-text-analytics/344348
Çi̇ftçi̇, M. N. U. A. V. A. (2024). NADİR TOPRAK ELEMENTLERİNİN SOSYO/KÜLTÜREL EKONOMİK VE TEKNOLOJİK GELİŞMELERLE İLİŞKİSİNİN N-GRAM ANALİZİ İLE İNCELENMESİ. JOURNAL OF SOCIAL, HUMANITIES AND ADMINISTRATIVE SCIENCES (JOSHAS), 6(24), 369-379.
Demir, Ö., Chawai, A. İ. B., & Doğan, B. (2019). Türkçe Metinlerde Sözlük Tabanli Yaklaşimla Duygu Analizi Ve Görselleştirme. International Periodical of Recent Technologies in Applied Engineering, 1(2), 58-66. Marmara University.
Elwalda, A., & Lu, K. (2016). The impact of online customer reviews (OCRs) on customers’ purchase decisions: An exploration of the main dimensions of OCRs. Journal of Customer Behaviour, 15(2), 123-152.
Eren, A., & Eren, D. (2020). Pazarlama Literatüründe Elektronik Ağızdan Ağıza İletişimin Bibliyometrik Analizi. İşletme Araştırmaları Dergisi, 12(3), 2515-2530.
Gaikwad, S. V., Chaugule, A., & Patil, P. (2014). Text mining methods and techniques. International Journal of Computer Applications, 85(17). Foundation of Computer Science.
García, B., del Alamo, J. M., Leotta, M., & Ricca, F. (2024). Exploring Browser Automation: A Comparative Study of Selenium, Cypress, Puppeteer, and Playwright. Içinde A. Bertolino, J. Pascoal Faria, P. Lago, & L. Semini (Ed.), Quality of Information and Communications Technology (ss. 142-149). Cham: Springer Nature Switzerland.
Gelfand Miller, E., Luce, M. F., Kahn, B. E., & Conant, E. F. (2009). Understanding Emotional Reactions for Negative Services: The Impact of Efficacy Beliefs and Stage in Process. Journal of Service Research, 12(1), 87-99. SAGE Publications Inc.
Ghasemaghaei, M., Eslami, S. P., Deal, K., & Hassanein, K. (2018). Reviews’ length and sentiment as correlates of online reviews’ ratings. Internet Research, 28(3), 544-563. Emerald Publishing Limited.
Ghatora, P. S., Hosseini, S. E., Pervez, S., Iqbal, M. J., & Shaukat, N. (2024). Sentiment Analysis of Product Reviews Using Machine Learning and Pre-Trained LLM. Big Data and Cognitive Computing, 8(12), 199. Multidisciplinary Digital Publishing Institute.
González-Rodríguez, M. R., Martínez-Torres, R., & Toral, S. (2016). Post-visit and pre-visit tourist destination image through eWOM sentiment analysis and perceived helpfulness. International Journal of Contemporary Hospitality Management, 28(11), 2609-2627. Emerald Group Publishing Limited.
Gormez, Y., Isik, Y. E., Temiz, M., & Aydin, Z. (2020). FBSEM: A Novel Feature-Based Stacked Ensemble Method for Sentiment Analysis. International Journal of Information Technology and Computer Science, 12(6), 11.
Gruss, R., Kim, E., & Abrahams, A. (2020). Engaging Restaurant Customers on Facebook: The Power of Belongingness Appeals on Social Media. Journal of Hospitality & Tourism Research, 44(2), 201-228. SAGE Publications Inc.
Gryka, P., & Janicki, A. (2023). Detecting Fake Reviews in Google Maps—A Case Study. Applied Sciences, 13(10), 6331. Multidisciplinary Digital Publishing Institute.
Gürcan, F., & Özyurt, Ö. (2020). E-Öğrenme Araştırmalarındaki Temel Eğilimler ve Bilgi Alanları: 2008-2018 Yılları Arasında Yayımlanan Makalelerle Konu Modelleme Analizi. Journal of Computer and Education Research, 8(16), 738-756. Tamer KUTLUCA.
von Helversen, B., Abramczuk, K., Kopeć, W., & Nielek, R. (2018). Influence of consumer reviews on online purchasing decisions in older and younger adults. Decision Support Systems, 113, 1-10.
Hong, S., & Pittman, M. (2020). eWOM anatomy of online product reviews: İnteraction effects of review number, valence, and star ratings on perceived credibility. International Journal of Advertising, 39(7), 892-920. Routledge.
Hu, X., Luo, J., & Wu, Z. (2022). Conspicuous display through photo sharing in online reviews: Evidence from an online travel platform. Information & Management, 59(8), 103705.
Hu, Y., & Kim, H. J. (2018). Positive and negative eWOM motivations and hotel customers’ eWOM behavior: Does personality matter? International Journal of Hospitality Management, 75, 27-37.
Huete-Alcocer, N. (2017). A Literature Review of Word of Mouth and Electronic Word of Mouth: Implications for Consumer Behavior. Frontiers in Psychology, 8. Frontiers. Geliş tarihi Ocak 8, 2025, gönderen https://www.frontiersin.org/journals/psychology/articles/10.3389/fpsyg.2017.01256/full
Husain, A., Alsharo, M., AlRababah, saif A., & Jaradat, M.-I. R. (2023). Content-Rating Consistency of Online Product Review and Its Impact on Helpfulness: A Fine-Grained Level Sentiment Analysis. Interdisciplinary Journal of Information, Knowledge, and Management, 18, 645-666.
Işık, M., & Çamurcu, A. Y. (2011). K-MEANS VE AŞIRI KÜRESEL C-MEANS ALGORITMALARI İLE BELGE MADENCİLİĞİ. Marmara Fen Bilimleri Dergisi, 22(1), 1-18. Marmara University.
Jeong, E., & Jang, S. (Shawn). (2011). Restaurant experiences triggering positive electronic word-of-mouth (eWOM) motivations. International Journal of Hospitality Management, 30(2), 356-366.
Jiménez, F. R., & Mendoza, N. A. (2013). Too Popular to Ignore: The Influence of Online Reviews on Purchase Intentions of Search and Experience Products. Journal of Interactive Marketing, 27(3), 226-235. SAGE Publications.
Juha, T., Chowdhury, S., Trina, S. M., Ami, M. F. R., & Hasme, A. O. (2024, Mart). Optimizing restaurant recommendations through sentiment analysis (Thesis). Brac University. Geliş tarihi Ocak 9, 2025, gönderen https://dspace.bracu.ac.bd:8443/xmlui/handle/10361/23798
Kapoor, P. S., Balaji, M. S., Maity, M., & Jain, N. K. (2021). Why consumers exaggerate in online reviews? Moral disengagement and dark personality traits. Journal of Retailing and Consumer Services, 60, 102496. Elsevier.
Kim, D. Y., & Kim, S. Y. (2022). The impact of customer-generated evaluation information on sales in online platform-based markets. Journal of Retailing and Consumer Services, 68, 103016.
Kim, J. M., Kim, M., & Key, S. (2020). When profile photos matter: The roles of reviewer profile photos in the online review generation and consumption processes. Journal of Research in Interactive Marketing, 14(4), 391-412. Emerald Publishing Limited.
Kim, S. J., Maslowska, E., & Malthouse, E. C. (2018). Understanding the effects of different review features on purchase probability. International Journal of Advertising, 37(1), 29-53. Routledge.
Kim, Y.-J., & Kim, H.-S. (2022). The Impact of Hotel Customer Experience on Customer Satisfaction through Online Reviews. Sustainability, 14(2), 848. Multidisciplinary Digital Publishing Institute.
Krey, N., Wu, S., Hsiao, S.-H. (Steven), & Lin, T. L. J. (2024). The joint effect of online reviews and manager responses in driving company ratings. Tourism Management Perspectives, 50, 101215.
Krishna, G. (2021). Understanding and identifying barriers to electric vehicle adoption through thematic analysis. Transportation Research Interdisciplinary Perspectives, 10, 100364.
Lee, Y.-J., Hosanagar, K., & Tan, Y. (2015). Do I Follow My Friends or the Crowd? Information Cascades in Online Movie Ratings. Management Science, 61(9), 2241-2258. INFORMS.
Li, H., Ji, H., Liu, H., Cai, D., & Gao, H. (2022). Is a picture worth a thousand words? Understanding the role of review photo sentiment and text-photo sentiment disparity using deep learning algorithms. Tourism Management, 92, 104559.
Li, H., Liu, H., Hailey Shin, H., & Ji, H. (2024a). Impacts of user-generated images in online reviews on customer engagement: A panel data analysis. Tourism Management, 101, 104855.
Li, H., Liu, H., Hailey Shin, H., & Ji, H. (2024b). Impacts of user-generated images in online reviews on customer engagement: A panel data analysis. Tourism Management, 101, 104855.
Li, H., Zhang, L., Guo, R. (Ami), Ji, H., & Yu, B. X. B. (2022). Information enhancement or hindrance? Unveiling the impacts of user-generated photos in online reviews. International Journal of Contemporary Hospitality Management, 35(7), 2322-2351. Emerald Publishing Limited.
Li, H., Zhang, Z., Meng, F., & Zhang, Z. (2019). “When you write review” matters: The interactive effect of prior online reviews and review temporal distance on consumers’ restaurant evaluation. International Journal of Contemporary Hospitality Management, 31(3), 1273-1291. Emerald Publishing Limited.
Line, N. D., Hanks, L., & Dogru, T. (2020). A reconsideration of the EWOM construct in restaurant research: What are we really measuring? International Journal of Contemporary Hospitality Management, 32(11), 3479-3500. Emerald Publishing Limited.
Litvin, S. W., Goldsmith, R. E., & Pan, B. (2008). Electronic word-of-mouth in hospitality and tourism management. Tourism Management, 29(3), 458-468.
Liu, H., Feng, S., & Hu, X. (Simon). (2022). Process vs. outcome: Effects of food photo types in online restaurant reviews on consumers’ purchase intention. International Journal of Hospitality Management, 102, 103179.
Liu, X., Zhang, Z., Law, R., & Zhang, Z. (2024). Words meet photos: How visual content impact rating. International Journal of Hospitality Management, 123, 103945.
Lu, Q., Qiang, Y., & Law, R. (2014). Moderating effects of product heterogeneity between online word-of-mouth and hotel sales. Journal of Electronic Commerce Research, 15(1), 1-12.
Marder, B., Erz, A., Angell, R., & Plangger, K. (2021). The Role of Photograph Aesthetics on Online Review Sites: Effects of Management- versus Traveler-Generated Photos on Tourists’ Decision Making. Journal of Travel Research, 60(1), 31-46. SAGE Publications Inc.
Mariani, M. M., & Visani, F. (2019). Embedding eWOM into efficiency DEA modelling: An application to the hospitality sector. International Journal of Hospitality Management, 80, 1-12.
Mathayomchan, B., & Taecharungroj, V. (2020). “How was your meal?” Examining customer experience using Google maps reviews. International Journal of Hospitality Management, 90, 102641.
Maulisa, A., & Hati, S. H. (2021). The anomaly of airline passenger behavioral intention: A comparison between low-cost and full-service airlines. ASEAN Marketing Journal, 10(2), 75-90.
Mellinas, J. P., & Sicilia, M. (2024). Comparing Google reviews and TripAdvisor to help researchers select the more appropriate information source. Consumer Behavior in Tourism and Hospitality, 19(4), 646-655. Emerald Publishing Limited.
Moe, W. W., & Trusov, M. (2011). The Value of Social Dynamics in Online Product Ratings Forums. Journal of Marketing Research, 48(3), 444-456. SAGE Publications Inc.
Nakayama, M., & Wan, Y. (2018). Is culture of origin associated with more expressions? An analysis of Yelp reviews on Japanese restaurants. Tourism Management, 66, 329-338.
Nawaz, Z., Zhao, C., Nawaz, F., Safeer, A. A., & Irshad, W. (2021). Role of Artificial Neural Networks Techniques in Development of Market Intelligence: A Study of Sentiment Analysis of eWOM of a Women’s Clothing Company. Journal of Theoretical and Applied Electronic Commerce Research, 16(5), 1862-1876. Multidisciplinary Digital Publishing Institute.
Noh, H., Jo, Y., & Lee, S. (2015). Keyword selection and processing strategy for applying text mining to patent analysis. Expert Systems with Applications, 42(9), 4348-4360.
Öztürk, K. (2023). Twitter Veri Kümesi ile Depresyon için Duyarlılık Analizi Özellik Çıkarma. Eskişehir Türk Dünyası Uygulama ve Araştırma Merkezi Bilişim Dergisi, 4(1), 29-32. Eskişehir Osmangazi Üniversitesi.
Park, C., & Lee, T. M. (2009). Information direction, website reputation and eWOM effect: A moderating role of product type. Journal of Business Research, 62(1), 61-67.
Park, C. W., Sutherland, I., & Lee, S. K. (2021). Effects of online reviews, trust, and picture-superiority on intention to purchase restaurant services. Journal of Hospitality and Tourism Management, 47, 228-236.
Parlangeli, O., Marchigiani, E., Bracci, M., Duguid, A. M., Palmitesta, P., & Marti, P. (2019). Offensive acts and helping behavior on the internet: An analysis of the relationships between moral disengagement, empathy and use of social media in a sample of Italian students. WORK, 63(3), 469-477. SAGE Publications.
Payne, W. B. (2021). Powering the local review engine at Yelp and Google: İntensive and extensive approaches to crowdsourcing spatial data. Regional Studies, 55(12), 1878-1889. RSA Website.
Pendrill, K. (2025, Ocak 30). 81 Restaurant Industry Statistics for 2025: Sales, Labor, & More. 81 Restaurant Industry Statistics for 2025. Geliş tarihi Ocak 30, 2025, gönderen https://www.touchbistro.com/blog/restaurant-industry-statistics/
Perera, C. H., Nayak, R., & Nguyen, L. T. V. (2020). The impact of subjective norms, eWOM and perceived brand credibility on brand equity: Application to the higher education sector. International Journal of Educational Management, 35(1), 63-74. Emerald Publishing Limited.
Polatgil, M., & Kekül, H. (2023). The Effect of Document Length on Machine Learning Success in Text-Based Data. 2023 Innovations in Intelligent Systems and Applications Conference (ASYU) (ss. 1-6). Program adı: 2023 Innovations in Intelligent Systems and Applications Conference (ASYU). Geliş tarihi Ocak 9, 2025, gönderen https://ieeexplore.ieee.org/document/10296594/?arnumber=10296594
Qiu, J., Liu, C., Li, Y., & Lin, Z. (2018). Leveraging sentiment analysis at the aspects level to predict ratings of reviews. Information Sciences, 451-452, 295-309.
Rahayu, A., Utama, D. H., & Novianty, R. (2021). The Impact of Online Customer Reviews on Purchase Intention in Online Marketplace (ss. 471-477). Program adı: 5th Global Conference on Business, Management and Entrepreneurship (GCBME 2020), Atlantis Press. Geliş tarihi Şubat 16, 2025, gönderen https://www.atlantis-press.com/proceedings/gcbme-20/125960498
Reinartz, W., Wiegand, N., & Imschloss, M. (2019). The impact of digital transformation on the retailing value chain. International Journal of Research in Marketing, Marketing Perspectives on Digital Business Models, 36(3), 350-366.
Rimé, B. (2009). Emotion Elicits the Social Sharing of Emotion: Theory and Empirical Review. Emotion Review, 1(1), 60-85. SAGE Publications.
Rozin, P., & Royzman, E. B. (2001). Negativity Bias, Negativity Dominance, and Contagion. Personality and Social Psychology Review, 5(4), 296-320. SAGE Publications Inc.
Sann, R., Lai, P.-C., & Chen, C.-T. (2021). Review papers on eWOM: Prospects for hospitality industry. Anatolia, 32(2), 177-206. Routledge.
Serra Cantallops, A., & Salvi, F. (2014). New consumer behavior: A review of research on eWOM and hotels. International Journal of Hospitality Management, 36, 41-51.
Sezgin, E. (2022). Development of Taband restaurant rating scale utilizing mixed methods. International Journal of Gastronomy and Food Science, 27, 100458.
Sezgi̇n, M., & Arican, B. (2023). Çevrim İçi Yorumların Destinasyon Deneyimine Etkisi, Turistik Deneyim Kalitesi ve Memnuniyetinin Araştırılması: Çatalhöyük ile Göbeklitepe Kıyaslaması. Journal of Tourism & Gastronomy Studies, 11(1), 484-511.
Shafieizadeh, K., & Tao, C.-W. (Willie). (2020). How does a menu’s information about local food affect restaurant selection? The roles of corporate social responsibility, transparency, and trust. Journal of Hospitality and Tourism Management, 43, 232-240.
Shin, H., & Larson, L. R. L. (2020). The bright and dark sides of humorous response to online customer complaint. European Journal of Marketing, 54(8), 2013-2047. Emerald Publishing Limited.
Sirat, M., & Özyavaş, A. (2022). Mevcut Yöntemlerin Sentezi ile Web Sayfalarının Belli Yapılardaki Bölgelerinin Tespiti. Turkish Studies, 17, 1.
Sridhar, S., & Srinivasan, R. (2012). Social Influence Effects in Online Product Ratings. Journal of Marketing, 76(5), 70-88. SAGE Publications Inc.
Stacy Jo, D. (2024, Şubat 29). Online reviews. Online reviews. Geliş tarihi gönderen https://www.statista.com/topics/4381/online-reviews/
Şahin, H., Kayakuş, M., Erdoğan, D., & Açıkgöz, F. Y. (2024). Sağlık Kuruluşlarının Kurumsal İtibarının Metin Madenciliği ve Duygu Analizi ile Değerlendirilmesi. Mehmet Akif Ersoy University Journal of Social Sciences Institute, (40), 91-104. Burdur Mehmet Akif Ersoy University.
Tanudjaja, A. E., Siady, V. H., Meidianto, V., Sukmaningsih, D. W., Halim, E., & Ferdianto. (2022). The Impact of Online Review on Customers Patronage Intention on Restaurant or Eating Places. 2022 International Conference on Information Management and Technology (ICIMTech) (ss. 511-516). Program adı: 2022 International Conference on Information Management and Technology (ICIMTech). Geliş tarihi Ocak 9, 2025, gönderen https://ieeexplore.ieee.org/abstract/document/9915270
Tuna, M. F. (2024). Leveraging Text Analytics to Enhance Marketing Insights From Digital Customer Experiences. New Trends in Marketing and Consumer Science (ss. 261-289). IGI Global Scientific Publishing. Geliş tarihi Haziran 21, 2025, gönderen https://www.igi-global.com/chapter/leveraging-text-analytics-to-enhance-marketing-insights-from-digital-customer-experiences/www.igi-global.com/chapter/leveraging-text-analytics-to-enhance-marketing-insights-from-digital-customer-experiences/347617
Uysal, A. K., & Gunal, S. (2014). The impact of preprocessing on text classification. Information Processing & Management, 50(1), 104-112.
Wang, Y., Kim, J., & Kim, J. (2021). The financial impact of online customer reviews in the restaurant industry: A moderating effect of brand equity. International Journal of Hospitality Management, 95, 102895.
Weathers, D., Swain, S. D., & Grover, V. (2015). Can online product reviews be more helpful? Examining characteristics of information content by product type. Decision Support Systems, 79, 12-23.
Xiao, S., Wei, C.-P., & Dong, M. (2016). Crowd intelligence: Analyzing online product reviews for preference measurement. Information & Management, 53(2), 169-182.
Yalcinkaya, B., & Just, D. R. (2023). Comparison of Customer Reviews for Local and Chain Restaurants: Multilevel Approach to Google Reviews Data. Cornell Hospitality Quarterly, 64(1), 63-73. SAGE Publications Inc.
Yang, J., & Mai, E. (Shirley). (2010). Experiential goods with network externalities effects: An empirical study of online rating system. Journal of Business Research, Advances in Internet Consumer Behavior& Marketing Strategy, 63(9), 1050-1057.
Yarış, A., & Arıcı, A. A. (2023). Türkiye’de Bulunan Michelin Yıldızlı Restoranlara Yapılan Çevrimiçi Yorumların Analizi. Journal of Gastronomy, Hospitalty and Travel, 6(4), 1923-1932.
Yi, J., Oh, Y. K., & Kim, J.-M. (2025). Unveiling the drivers of satisfaction in mobile trading: Contextual mining of retail investor experience through BERTopic and generative AI. Journal of Retailing and Consumer Services, 82, 104066.
Yoon, Y., Kim ,Alex Jiyoung, Kim ,Jeeyeon, & and Choi, J. (2019). The effects of eWOM characteristics on consumer ratings: Evidence from TripAdvisor.com. International Journal of Advertising, 38(5), 684-703. Routledge.
Yousaf, S., & Kim, J. M. (2023). Dark personalities and online reviews: A textual content analysis of review generation, consumption and distribution. Tourism Management, 98, 104771. Elsevier.
Yuan, Z., & Liu, Y. (2024). Extraction of Feature Information and Noise Reduction Strategies for Web Pages. 2024 14th International Conference on Information Technology in Medicine and Education (ITME) (ss. 41-44). Program adı: 2024 14th International Conference on Information Technology in Medicine and Education (ITME). Geliş tarihi Mayıs 19, 2025, gönderen https://ieeexplore.ieee.org/abstract/document/10935490
Zhao, B. (2022). Web Scraping. Içinde L. A. Schintler & C. L. McNeely (Ed.), Encyclopedia of Big Data (ss. 951-953). Cham: Springer International Publishing. Geliş tarihi Şubat 16, 2025, gönderen https://link.springer.com/10.1007/978-3-319-32010-6_483
Zhu, F., & Zhang, X. (Michael). (2010). Impact of Online Consumer Reviews on Sales: The Moderating Role of Product and Consumer Characteristics. Journal of Marketing, 74(2), 133-148. SAGE Publications Inc.
Zitek, T., Bui, J., Day, C., Ecoff, S., & Patel, B. (2023). A cross-sectional analysis of Yelp and Google reviews of hospitals in the United States. Journal of the American College of Emergency Physicians Open, 4(2), e12913.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Journal of Tourism & Gastronomy Studies

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


